
MuPAD®

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MuPAD® User’s Guide

© COPYRIGHT 1993–2012 by SciFace Software GmbH & Co. KG.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MuPAD is a registered trademark of SciFace Software GmbH & Co. KG.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2012 Online only New for Version 5.9 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
First Steps in MuPAD . 1-2
Open and Save Notebooks . 1-2
Desktop Overview . 1-4
Evaluate Mathematical Expressions and Commands 1-7
Quick Access to Standard MuPAD Functions 1-10

Access Help for Particular Command 1-19
Autocomplete Commands . 1-19
Use Tooltips and the Context Menu 1-21
Use Help Commands . 1-24

Perform Computations . 1-25
Compute with Numbers . 1-25
Differentiation . 1-29
Integration . 1-32
Linear Algebra . 1-33
Solve Equations . 1-36
Manipulate Expressions . 1-39
Use Assumptions in Your Computations 1-41

Use Graphics . 1-44
Graphic Options Available in MuPAD 1-44
Basic Plotting . 1-45
Format Plots . 1-51
Present Graphics . 1-62
Create Animated Graphics . 1-64

Format and Export Documents and Graphics 1-67
Format Text . 1-67
Format Mathematical Expressions 1-75
Format Expressions in Input Regions 1-77
Change Default Format Settings . 1-81
Use Frames . 1-84
Use Tables . 1-92

iii

Embed Graphics . 1-102
Work with Links . 1-106
Export Notebooks to HTML, PDF, and Plain Text
Formats . 1-117

Save and Export Graphics . 1-119

Use Data Structures . 1-129
Mathematical Expressions . 1-129
Sequences . 1-130
Lists . 1-133
Sets . 1-140
Tables . 1-146
Arrays . 1-149
Vectors and Matrices . 1-153

Use the MuPAD Libraries . 1-156
Overview of Libraries . 1-156
Standard Library . 1-158
Find Information About a Library . 1-158
Avoid Name Conflicts Between MuPAD Objects and Library
Functions . 1-159

Programming Basics . 1-161
Conditional Control . 1-161
Loops . 1-164
Procedures . 1-171
Functions . 1-176
Shortcut for Closing Statements . 1-178

Trace Errors with the MuPAD Debugger 1-179
Overview . 1-179
Open the Debugger . 1-179
Debug Step-by-Step . 1-181
Set and Remove Breakpoints . 1-185
Evaluate Variables and Expressions After a Particular
Function Call . 1-192

Watch Intermediate Values of Variables and
Expressions . 1-194

View Names of Currently Running Procedures 1-195
Correct Errors . 1-196

iv Contents

Notebook Interface

2
Notebook Overview . 2-3

Debugger Window Overview . 2-6

Arrange Toolbars and Panes . 2-9
Enabling and Disabling Toolbars and Panes 2-9
Move Toolbars and Panes . 2-10

Enter Data and View Results . 2-12

View Status Information . 2-14

Save Custom Arrangements . 2-15

Set Preferences for Notebooks . 2-16
Preferences Available for Notebooks 2-16
Change Default Formatting . 2-18
Use Scalable Formats for Copying Formulas and
Graphics . 2-19

Set Preferences for Dialogs, Toolbars, and Graphics . . 2-21
Preferences Available for Dialogs, Toolbars, and
Graphics . 2-21

Preferences for Toolbars . 2-23
Preferences for Graphics . 2-23
Preferences for Dialog Boxes . 2-23

Set Font Preferences . 2-25
Select Generic Fonts . 2-25
Default Generic Fonts for Microsoft Windows, Macintosh,
and Linux . 2-27

Set Engine Preferences . 2-28
Change Global Settings . 2-28
Restore Default Global Settings . 2-30
Add Hidden Startup Commands to All Notebooks 2-30

v

Options Available for MuPAD Engine Startup 2-30

Get Version Information . 2-33

Use Different Output Modes . 2-34
Abbreviations . 2-34
Typeset Math Mode . 2-35
Pretty Print Mode . 2-36
Mathematical Notations Used in Typeset Mode 2-37

Set Line Length in Plain Text Outputs 2-39

Delete Outputs . 2-40

Greek Letters in Text Regions . 2-41

Special Characters in Outputs . 2-42

Non-Greek Characters in Text Regions 2-43

Use Keyboard Shortcuts . 2-44

Use Mnemonics . 2-45

Overview . 2-46

Wrap Long Lines . 2-47
Wrap Text . 2-47
Wrap Expressions in Input Regions 2-51
Wrap Output Expressions . 2-54

Hide Code Lines . 2-57

Change Font Size Quickly . 2-60

Scale Graphics . 2-65

vi Contents

Use Print Preview . 2-68
View Documents Before Printing . 2-68
Print Documents from Print Preview 2-68
Save Documents to PDF Format . 2-69
Get More Out of Print Preview . 2-70

Change Page Settings for Printing 2-72

Print Wide Notebooks . 2-73

Mathematics

3
Evaluations in Symbolic Computations 3-5

Level of Evaluation . 3-8
What Is an Evaluation Level? . 3-8
Incomplete Evaluations . 3-9
Control Evaluation Levels . 3-11

Enforce Evaluation . 3-14

Prevent Evaluation . 3-17

Actual and Displayed Results of Evaluations 3-19

Perform Evaluation at a Point . 3-21

Choose a Solver . 3-23

Solve Algebraic Equations and Inequalities 3-28
Specify Right Side of Equation . 3-28
Specify Equation Variables . 3-28
Solve Higher-Order Polynomial Equations 3-30
Find Multiple Roots . 3-32
Isolate Real Roots of Polynomial Equations 3-33

vii

Solve Algebraic Systems . 3-34
Linear Systems of Equations . 3-34
Linear Systems in a Matrix Form . 3-35
Nonlinear Systems . 3-41

Solve Ordinary Differential Equations and Systems . . 3-45
General Solutions . 3-45
Initial and Boundary Value Problems 3-46
Special Types of Ordinary Differential Equations 3-47
Systems of Ordinary Differential Equations 3-49
Plot Solutions of Differential Equations 3-50

Test Results . 3-55
Solutions Given in the Form of Equations 3-55
Solutions Given as Memberships . 3-57
Solutions Obtained with IgnoreAnalyticConstraints . . 3-59

If Results Look Too Complicated . 3-61
Use Options to Narrow Results . 3-61
Use Assumptions to Narrow Results 3-63
Simplify Solutions . 3-64

If Results Differ from Expected . 3-66
Verify Equivalence of Expected and Obtained Solutions . . 3-66
Verify Equivalence of Solutions Containing Arbitrary
Constants . 3-67

Completeness of Expected and Obtained Solutions 3-70

Solve Equations Numerically . 3-73
Get Numeric Results . 3-73
Solve Polynomial Equations and Systems 3-75
Solve Arbitrary Algebraic Equations and Systems 3-77
Isolate Numeric Roots . 3-82
Solve Differential Equations and Systems 3-83

Use General Simplification Functions 3-90
When to Use General Simplifiers . 3-90
Choose simplify or Simplify . 3-91
Use Options to Control Simplification Algorithms 3-91

Choose Simplification Functions . 3-94

viii Contents

Collect Terms with Same Powers . 3-95
Combine Terms of Same Algebraic Structures 3-96
Expand Expressions . 3-97
Factor Expressions . 3-98
Compute Normal Forms of Expressions 3-99
Compute Partial Fraction Decompositions of
Expressions . 3-100

Simplify Radicals in Arithmetic Expressions 3-101
Extract Real and Imaginary Parts of Complex
Expressions . 3-101

Rewrite Expressions in Terms of Other Functions 3-102

If You Want to Simplify Results Further 3-105
Increase the Number of Simplification Steps 3-105
Apply Several Simplification Functions 3-106
Use Options . 3-107
Use Assumptions . 3-108

Convert Expressions Involving Special Functions 3-110
Simplify Special Functions Automatically 3-110
Use General Simplifiers to Reduce Special Functions 3-111
Expand Expressions Involving Special Functions 3-112
Verify Solutions Involving Special Functions 3-113

When to Use Assumptions . 3-116

Use Permanent Assumptions . 3-118
Set Permanent Assumptions . 3-118
Add Permanent Assumptions . 3-120
Clear Permanent Assumptions . 3-122

Use Temporary Assumptions . 3-124
Create Temporary Assumptions . 3-124
Assign Temporary Values to Parameters 3-125
Interactions Between Temporary and Permanent
Assumptions . 3-127

Use Temporary Assumptions on Top of Permanent
Assumptions . 3-127

Choose Differentiation Function . 3-129

ix

Differentiate Expressions . 3-130

Differentiate Functions . 3-132

Compute Indefinite Integrals . 3-135

Compute Definite Integrals . 3-138

Compute Multiple Integrals . 3-140

Apply Standard Integration Methods Directly 3-142
Integration by Parts . 3-142
Change of Variable . 3-143

Get Simpler Results . 3-145

If an Integral Is Undefined . 3-146

If MuPAD Cannot Compute an Integral 3-147
Approximate Indefinite Integrals . 3-147
Approximate Definite Integrals . 3-148

Compute Symbolic Sums . 3-150
Indefinite Sums . 3-150
Definite Sums . 3-151
Sums Over Roots of a Polynomial . 3-152

Approximate Sums Numerically . 3-153

Compute Taylor Series for Univariate Expressions . . . 3-155

Compute Taylor Series for Multivariate Expressions . . 3-159

Control Number of Terms in Series Expansions 3-160

O-term (The Landau Symbol) . 3-163

x Contents

Compute Generalized Series . 3-164

Compute Bidirectional Limits . 3-166

Compute Right and Left Limits . 3-168

If Limits Do Not Exist . 3-171

Create Matrices . 3-173

Create Vectors . 3-175

Create Special Matrices . 3-176

Access and Modify Matrix Elements 3-178
Use Loops to Modify Matrix Elements 3-178
Use Functions to Modify Matrix Elements 3-179

Create Matrices over Particular Rings 3-180

Use Sparse and Dense Matrices . 3-182

Compute with Matrices . 3-183
Basic Arithmetic Operations . 3-183
More Operations Available for Matrices 3-184

Compute Determinants and Traces of Square
Matrices . 3-188

Invert Matrices . 3-189

Transpose Matrices . 3-190

Swap and Delete Rows and Columns 3-191

Compute Dimensions of a Matrix . 3-193

xi

Compute Reduced Row Echelon Form 3-194

Compute Rank of a Matrix . 3-195

Compute Bases for Null Spaces of Matrices 3-196

Find Eigenvalues and Eigenvectors 3-197

Find Jordan Canonical Form of a Matrix 3-200

Compute Matrix Exponentials . 3-203

Compute Cholesky Factorization 3-204

Compute LU Factorization . 3-206

Compute QR Factorization . 3-208

Compute Determinant Numerically 3-210

Compute Eigenvalues and Eigenvectors
Numerically . 3-214

Compute Factorizations Numerically 3-221
Cholesky Decomposition . 3-221
LU Decomposition . 3-222
QR Decomposition . 3-224
Singular Value Decomposition . 3-229

Mathematical Constants Available in MuPAD 3-232
Special Real Numbers . 3-232
Infinities . 3-233
Boolean Constants . 3-233
Special Values . 3-233
Special Sets . 3-234

Special Functions Available in MuPAD 3-236
Dirac and Heaviside Functions . 3-236

xii Contents

Gamma Functions . 3-236
Zeta Function and Polylogarithms . 3-237
Airy and Bessel Functions . 3-237
Exponential and Trigonometric Integrals 3-238
Error Functions and Fresnel Functions 3-238
Hypergeometric, Meijer G, and Whittaker Functions 3-238
Elliptic Integrals . 3-239
Lambert W Function (omega Function) 3-239

Floating-Point Arguments and Function Sensitivity . . 3-240
Use Symbolic Computations When Possible 3-241
Increase Precision . 3-241
Approximate Parameters and Approximate Results 3-243
Plot Special Functions . 3-245

Integral Transforms . 3-249
Fourier and Inverse Fourier Transforms 3-249
Laplace and Inverse Laplace Transforms 3-252

Z-Transforms . 3-257

Discrete Fourier Transforms . 3-260

Use Custom Patterns for Transforms 3-265
Add New Patterns . 3-265
Overwrite Existing Patterns . 3-266

Supported Distributions . 3-268

Import Data . 3-270

Store Statistical Data . 3-273

Compute Measures of Central Tendency 3-274

Compute Measures of Dispersion 3-278

Compute Measures of Shape . 3-280

xiii

Compute Covariance and Correlation 3-283

Handle Outliers . 3-285

Bin Data . 3-286

Create Scatter and List Plots . 3-288

Create Bar Charts, Histograms, and Pie Charts 3-292
Bar Charts . 3-292
Histograms . 3-294
Pie Charts . 3-295

Create Box Plots . 3-300

Create Quantile-Quantile Plots . 3-302

Univariate Linear Regression . 3-305

Univariate Nonlinear Regression 3-309

Multivariate Regression . 3-312

Principles of Hypothesis Testing . 3-315

Perform chi-square Test . 3-316

Perform Kolmogorov-Smirnov Test 3-318

Perform Shapiro-Wilk Test . 3-319

Perform t-Test . 3-320

Divisors . 3-321
Compute Divisors and Number of Divisors 3-321
Compute Greatest Common Divisors 3-322
Compute Least Common Multiples 3-323

xiv Contents

Primes and Factorizations . 3-324
Operate on Primes . 3-324
Factorizations . 3-326
Prove Primality . 3-326

Modular Arithmetic . 3-329
Quotients and Remainders . 3-329
Common Modular Arithmetic Operations 3-331
Residue Class Rings and Fields . 3-332

Congruences . 3-334
Linear Congruences . 3-334
Systems of Linear Congruences . 3-335
Modular Square Roots . 3-336
General Solver for Congruences . 3-339

Sequences of Numbers . 3-341
Fibonacci Numbers . 3-341
Mersenne Primes . 3-341
Continued Fractions . 3-342

Programming Fundamentals

4
Data Type Definition . 4-3
Domain Types . 4-3
Expression Types . 4-3

Choose Appropriate Data Structures 4-6

Convert Data Types . 4-8
Use the coerce Function . 4-9
Use the expr Function . 4-10
Use Constructors . 4-13

Define Your Own Data Types . 4-15

xv

Access Arguments of a Procedure 4-18

Test Arguments . 4-20
Check Types of Arguments . 4-20
Check Arguments of Individual Procedures 4-21

Verify Options . 4-24

Trace Procedures, Domains, Methods, and Function
Environments . 4-27

Display Progress . 4-30
Embed Status Messages in Procedures 4-30
Display Status Messages . 4-31

Use Assertions . 4-34

Write Error and Warning Messages 4-35

Handle Errors . 4-37

When to Analyze Performance . 4-39

Measure Time . 4-40
Calls to MuPAD Processes . 4-40
Calls to External Processes . 4-41

Profile Your Code . 4-42

Techniques for Improving Performance 4-46

Display Memory Usage . 4-48
Use the Status Bar . 4-48
Generate Memory Usage Reports Periodically 4-49
Generate Memory Usage Reports for Procedure Calls 4-50

Remember Mechanism . 4-52
Why Use the Remember Mechanism 4-52

xvi Contents

Remember Results Without Context 4-53
Remember Results and Context . 4-54
Clear Remember Tables . 4-55
Potential Problems Related to the Remember
Mechanism . 4-57

History Mechanism . 4-59
Access the History Table . 4-59
Specify Maximum Number of Entries 4-62
Clear the History Table . 4-63

Why Test Your Code . 4-64

Write Single Tests . 4-66

Write Test Scripts . 4-68

Code Verification . 4-70

Protect Function and Option Names 4-71

Create and Extend Libraries . 4-73
Create New Libraries . 4-73
Add New Functions to Libraries . 4-77

Data Collection . 4-81
Parallel Collection . 4-81
Fixed-Length Collection . 4-83
Known-Maximum-Length Collection 4-83
Unknown-Maximum-Length Collection 4-84

Visualize Expression Trees . 4-87

Modify Subexpressions . 4-89
Find and Replace Subexpressions . 4-89
Recursive Substitution . 4-92

Variables Inside Procedures . 4-95
Closures . 4-95

xvii

Static Variables . 4-97

Utility Functions . 4-99
Utility Functions Inside Procedures 4-99
Utility Functions Outside Procedures 4-99
Utility Functions in Closures . 4-100

Private Methods . 4-102

Calls by Reference and Calls by Value 4-103
Calls by Value . 4-103
Calls by Reference . 4-104

Integrate Custom Functions into MuPAD 4-108

Graphics and Animations

5
Gallery . 5-2
2D Function and Curve Plots . 5-2
Other 2D examples . 5-6
3D Functions, Surfaces, and Curves 5-15

Easy Plotting: Graphs of Functions 5-21
2D Function Graphs: plotfunc2d . 5-21
3D Function Graphs: plotfunc3d . 5-32
Attributes for plotfunc2d and plotfunc3d 5-43

Advanced Plotting: Principles and First Examples . . . 5-70
General Principles . 5-70
Some Examples . 5-75

The Full Picture: Graphical Trees 5-82

Viewer, Browser, and Inspector: Interactive
Manipulation . 5-86

xviii Contents

Primitives . 5-92

Attributes . 5-98
Default Values . 5-99
Inheritance of Attributes . 5-100
Primitives Requesting Special Scene Attributes: “Hints” . . 5-105
The Help Pages of Attributes . 5-107

Layout of Canvas and Scenes . 5-108
Layout of the Canvas . 5-108
Layout of Scenes . 5-116

Animations . 5-120
Generate Simple Animations . 5-120
Play Animations . 5-125
The Number of Frames and the Time Range 5-127
What Can Be Animated? . 5-129
Advanced Animations: The Synchronization Model 5-131
Frame by Frame Animations . 5-134
Examples . 5-139

Groups of Primitives . 5-146

Transformations . 5-148

Legends . 5-152

Fonts . 5-156

Colors . 5-158
RGB Colors . 5-158
HSV Colors . 5-161

Save and Export Pictures . 5-163
Save and Export Interactively . 5-163
Save in Batch Mode . 5-163

Import Pictures . 5-167

xix

Cameras in 3D . 5-169

Possible Strange Effects in 3D . 5-177

Quick Reference

6
Glossary . 6-2

More Information About Some of the MuPAD
Libraries

7
Abstract Data Types Library . 7-2
Example . 7-2

Axioms . 7-4
Bibliography . 7-4

Categories . 7-5
Introduction . 7-5
Category Constructors . 7-6
Bibliography . 7-6

Combinatorics . 7-7

Functional Programming . 7-8

Gröbner bases . 7-10

The import Library . 7-11

Integration Utilities . 7-12

xx Contents

First steps . 7-12
Integration by parts and by change of variables 7-14

Linear Algebra Library . 7-16
Introduction . 7-16
Data Types for Matrices and Vectors 7-17

Linear Optimization . 7-22

The misc Library . 7-23

Numeric Algorithms Library . 7-24

Orthogonal Polynomials . 7-25

Properties and Assumptions . 7-26
Properties of identifiers . 7-26
All Properties . 7-27

Typeset Symbols . 7-31
Greek Letters . 7-31
Open Face Letters . 7-33
Arrows . 7-33
Operators . 7-34
Comparison Operators . 7-35
Other Symbols . 7-36
Whitespaces . 7-37
Braces . 7-37
Punctuation Marks . 7-37
Umlauts . 7-38
Currency . 7-38
Math Symbols . 7-39

Type Checking and Mathematical Properties 7-40
Example 1 . 7-42
Example 2 . 7-42
Example 3 . 7-43
Example 4 . 7-43

xxi

Index

xxii Contents

1

Getting Started

• “First Steps in MuPAD” on page 1-2

• “Access Help for Particular Command” on page 1-19

• “Perform Computations” on page 1-25

• “Use Graphics” on page 1-44

• “Format and Export Documents and Graphics” on page 1-67

• “Use Data Structures” on page 1-129

• “Use the MuPAD Libraries” on page 1-156

• “Programming Basics” on page 1-161

• “Trace Errors with the MuPAD Debugger” on page 1-179

1 Getting Started

First Steps in MuPAD

In this section...

“Open and Save Notebooks” on page 1-2

“Desktop Overview” on page 1-4

“Evaluate Mathematical Expressions and Commands” on page 1-7

“Quick Access to Standard MuPAD Functions” on page 1-10

Open and Save Notebooks

Opening Notebooks from the MATLAB Command Window
To start MuPAD® from the MATLAB® Command Window, enter the
mupadwelcome command. The welcome screen appears.

1-2

First Steps in MuPAD

From the welcome screen you can:

• Access MuPAD Help by clicking any of the topics in the First Steps pane.

• Start a new notebook by clicking the New Notebook button.

• Start a new MATLAB Editor window for programming by clicking the
New Editor button.

Open an existing notebook or program file by clicking the Open Files
button.

• Open an existing notebook by clicking a name in the Open Recent File
list.

1-3

1 Getting Started

Also, to start a new blank notebook, you can enter the mupad command in the
MATLAB Command Window.

For more information, see “MuPAD Files and Interfaces”.

Open Notebooks in MuPAD
If you already have a notebook or the Help Browser open, you can start
new notebooks and open existing ones without switching to the MATLAB
Command Window:

• To start a new notebook, select File>New Notebook from the main menu
or use the toolbar.

• To open a new Editor window, select File>New Editor from the main
menu or use the toolbar.

• To open an existing notebook, select File>Open from the main menu
or use the toolbar. Also, you can open the list of notebooks you recently
worked with.

Save Notebooks
To save changes in a notebook, select File>Save or File>Save As from the
main menu or use the toolbar.

Desktop Overview
A MuPAD notebook has three types of regions: input regions, output regions,
and text regions.

1-4

First Steps in MuPAD

In the input regions, marked by grey brackets, you can type mathematical
expressions and commands in the MuPAD language. For example, type the
following expression and press Enter to evaluate the result:

1-5

1 Getting Started

3*2^10 + 1/3 - 39208/3

The results (including graphics) appear in a new output region. The default
font color for input regions is red, and the default font color for output regions
is blue. To customize default settings, see Changing Default Format Settings.

When you evaluate an expression in the bottom input region, MuPAD inserts
a new input region below. To insert new input regions in other parts of
a notebook:

1 Select the place in a notebook where you want to insert a new input region

2 Insert a new input region:

• To insert an input region below the cursor position, select
Insert>Calculation from the main menu.

• To insert an input region above the cursor position, select
Insert>Calculation Above from the main menu.

You can type and format text in a notebook similar to working in any word
processing application. To start a new text region, click outside the gray
brackets and start typing.

Also, to insert a new text region, you can select Insert>Text Paragraph or
Insert>Text Paragraph Above. You cannot insert a text region between
adjacent input and output regions.

You can exchange data between different regions in a notebook. For example,
you can:

• Copy expressions and commands from the text regions to the input regions
and evaluate them.

• Copy expressions and commands from the input regions to the text regions.

• Copy results including mathematical expressions and graphics from the
output regions to the text regions.

1-6

First Steps in MuPAD

• Copy results from the output regions to the input regions. Mathematical
expressions copied from the output regions appear as valid MuPAD input
commands.

You cannot paste data into the output regions. To change the results, edit the
associated input region and evaluate it by pressing Enter.

Evaluate Mathematical Expressions and Commands

Working in a Single Input Region
To evaluate an expression or execute a command in a notebook, press Enter:
3*2^10 + 1/3 - 39208/3

The results appear in the same grey bracket below the input data. By default,
the commands and calculations you type appear in red color, the results
appear in blue.

To suppress the output of a command, terminate a command with a colon.
This allows you to hide irrelevant intermediate results. For example, assign
the factorial of 123 to the variable a, and the factorial of 132 to the variable b.
In MuPAD, the assignment operator is := (the equivalent function is _assign).
The factorial operator is ! (the equivalent function is fact). Terminate these
assignments with colons to suppress the outputs. Here MuPAD displays
only the result of the division a/b:
a := 123!: b := 132!: a/b1/9206492916741120000

delete a, b:You can enter several commands in an input region separating
them by semicolons or colons:
a+b; a*b; a^ba + b

a*b

1-7

1 Getting Started

a^b

To start a new line in an input region, press Ctrl+Enter or Shift+Enter.

Working with Multiple Input Regions
If you have several input regions, you can go back to previous calculations and
edit and reevaluate them. If you have a sequence of calculations in several
input regions, the changes in one region do not automatically propagate
throughout other regions. For example, suppose you have the following
calculation sequence:
y := exp(2*x)exp(2*x)

z := x + yx + exp(2*x)

If you change the value of the variable y, the change does not automatically
apply to the variable z. To propagate the change throughout different input
regions, select Notebook from the main menu. From here you can:

• Select Evaluate to evaluate calculations in one input region.

• Select Evaluate From Beginning to evaluate calculations in the input
regions from the beginning of a notebook to the cursor position.

• Select Evaluate To End to evaluate calculations in the input regions from
the cursor position to the end of a notebook.

• Select Evaluate All to evaluate calculations in all input regions in a
notebook.

1-8

First Steps in MuPAD

Also, you can propagate the change throughout multiple input regions by
pressing Enter in each input region.

1-9

1 Getting Started

Quick Access to Standard MuPAD Functions
To eliminate syntax errors and to make it easy to remember the commands
and functions, MuPAD can automatically complete the command you start
typing. To automatically complete the command, press Ctrl+space.

You also can access common functions through the Command Bar.

1-10

First Steps in MuPAD

If you do not see the Command Bar, select View>Command Bar.

1-11

1 Getting Started

The buttons on the Command Bar display the function labels. To see the name
of the function that the button presents, hover your cursor over the button.

To insert a function:

1 Point the cursor at the place in an input region where you want to insert a
function.

2 Click the button corresponding to the function.

3 Insert the parameters instead of the # symbols. You can switch between
the parameters by pressing the Tab key.

1-12

First Steps in MuPAD

Most of the buttons on the Command Bar include a drop-down menu with a
list of similar functions. The buttons display a small triangle in the bottom
right corner. Click the button to open the list of functions.

1-13

1 Getting Started

Using the Command Bar, you also can create the following:

• Vectors and matrices

1-14

First Steps in MuPAD

• 2-D plots and animations

1-15

1 Getting Started

• 3-D plots

1-16

First Steps in MuPAD

General Math and Plot Commands menus at the bottom of the Command Bar
display the categorized lists of functions.

1-17

1 Getting Started

1-18

Access Help for Particular Command

Access Help for Particular Command

In this section...

“Autocomplete Commands” on page 1-19

“Use Tooltips and the Context Menu” on page 1-21

“Use Help Commands” on page 1-24

Autocomplete Commands
MuPAD helps you complete the names of known commands as you type them
so that you can avoid spelling mistakes. Type the first few characters of the
command name, and then press Ctrl+space. If there is exactly one name of a
command that starts with these letters, MuPAD completes the command. If
more than one name starts with the characters you typed, MuPAD displays
a list of all names starting with those characters.

1-19

1 Getting Started

1-20

Access Help for Particular Command

Use Tooltips and the Context Menu
To get a brief description and acceptable syntax for a function, type the
function name in a notebook and hover your cursor over the command.

1-21

1 Getting Started

For more detailed information, right-click the name of a command and select
Help about from the context menu.

1-22

Access Help for Particular Command

1-23

1 Getting Started

Use Help Commands
You can get a brief description of a command and a list of acceptable input
parameters using info:
info(solve) solve -- solve equations and inequalities [try ?solve for options] For
more detailed information about the command and its input parameters,
use the ? command:
?solve

1-24

Perform Computations

Perform Computations

In this section...

“Compute with Numbers” on page 1-25

“Differentiation” on page 1-29

“Integration” on page 1-32

“Linear Algebra” on page 1-33

“Solve Equations” on page 1-36

“Manipulate Expressions” on page 1-39

“Use Assumptions in Your Computations” on page 1-41

Compute with Numbers

Types of Numbers
Using MuPAD, you can operate on the following types of numbers:

• Integer numbers

• Rational numbers

• Floating-point numbers

• Complex numbers

By default, MuPAD assumes that all variables are complex numbers.

Compute with Integers and Rationals
When computing with integers and rational numbers, MuPAD returns integer
results
2 + 24

or rational results:
(1 + (5/2*3))/(1/7 + 7/9)^267473/6728

1-25

1 Getting Started

If MuPAD cannot find a representation of an expression in an integer or
rational form, it returns a symbolic expression:
56^(1/2)sqrt(56)

Compute with Special Mathematical Constants
You can perform exact computations that include the constants
exp(1) =exp(1)=2.718... and π=3.1415...:
2*(exp(2)/PI)(2*exp(2))/PI

For more information on the mathematical constants implemented in
MuPAD, see “Constants”.

Approximate Numerically
By default, MuPAD performs all computations in an exact form. To obtain a
floating-point approximation to an expression, use the float command. For
example:
float(sqrt(56))7.483314774

The accuracy of the approximation depends on the value of the global variable
DIGITS. The variable DIGITS can assume any integer value between 1 and
229 + 1. For example:
DIGITS:=20: float(sqrt(56))7.4833147735478827712

1-26

Perform Computations

The default value of the variable DIGITS is 10. To restore the default value,
enter:
delete DIGITSWhen MuPAD performs arithmetic operations on numbers
involving at least one floating-point number, it automatically switches to
approximate numeric computations:
(1.0 + (5/2*3))/(1/7 + 7/9)^210.02868609

If an expression includes exact values such as exp(1) or sin(2) and
floating-point numbers, MuPAD approximates only numbers:
1.0/3*exp(1)*sin(2)0.3333333333*exp(1)*sin(2)

To approximate an expression with exact values, use the float command:
float(1.0/3*exp(1)*sin(2))0.8239088907

or use floating-point numbers as arguments:
1.0/3*exp(1.0)*sin(2.0)0.8239088907

You also can approximate the constants π and exp(1) :
DIGITS:=30: float(PI); float(E); delete
DIGITS3.14159265358979323846264338328

2.71828182845904523536028747135

1-27

1 Getting Started

Work with Complex Numbers
In the input regions MuPAD recognizes an uppercase I as the imaginary unit

(-1)^(1/2) . In the output regions, MuPAD uses a lowercase i to display the
imaginary unit:
sqrt(-1), I^2I, -1

Both real and imaginary parts of a complex number can contain integers,
rationals, and floating-point numbers:
(1 + 0.2*I)*(1/2 + I)*(0.1 + I/2)^30.0988 + (- 0.1144*I)

If you use exact expressions, for example, sqrt(2) , MuPAD does not always
return the result in Cartesian coordinates:
1/(sqrt(2) + I)1/(sqrt(2) + I)

To split the result into its real and imaginary parts, use the rectform
command:
rectform(1/(sqrt(2) + I))sqrt(2)/3 - I/3

The functions Re and Im return real and imaginary parts of a complex
number:
Re(1/(2^(1/2) + I))sqrt(2)/3

Im(1/(2^(1/2) + I))-1/3

1-28

Perform Computations

The function conjugate returns the complex conjugate:
conjugate(1/(2^(1/2) + I))1/(sqrt(2) - I)

The function abs and arg return an absolute value and a polar angle of a
complex number:
abs(1/(2^(1/2) + I)); arg(1/(2^(1/2) + I))sqrt(3)/3

-arctan(sqrt(2)/2)

Differentiation

Derivatives of Single-Variable Expressions
To compute the derivative of a mathematical expression, use the diff
command. For example:
f := 4*x + 6*x^2 + 4*x^3 + x^4: diff(f, x)4*x^3 + 12*x^2 + 12*x + 4

Partial Derivatives
You also can compute a partial derivative of a multivariable expression:
f := y^2 + 4*x + 6*x^2 + 4*x^3 + x^4: diff(f, y)2*y

1-29

1 Getting Started

Second- and Higher-Order Derivatives
To find higher order derivatives, use a nested call of the diff command
diff(diff(diff(sin(x), x), x), x)-cos(x)

or, more efficiently:
diff(sin(x), x, x, x)-cos(x)

You can use the sequence operator $ to compute second or higher order
derivatives:
diff(sin(x), x $ 3)-cos(x)

Mixed Derivatives
diff(f, x1, x2, ...) is equivalent to diff(...diff(diff(f, x1),
x2)...). The system first differentiates f with respect to x1, and then
differentiates the result with respect to x2, and so on. For example
diff(diff((x^2*y^2 + 4*x^2*y + 6*x*y^2), y), x)8*x + 12*y + 4*x*y

is equivalent to
diff(x^2*y^2 + 4*x^2*y + 6*x*y^2, y, x)8*x + 12*y + 4*x*y

Note Note To improve performance, MuPAD assumes that all mixed
derivatives commute. For example, diff(diff(f(x, y), x), y) = diff(diff(f(x, y),

x), y) .

1-30

Perform Computations

This assumption suffices for most of engineering and scientific problems.

For further computations, delete f:
delete f:

Derivatives of a Function
MuPAD provides two differentiation functions, diff and D. The diff function
serves for differentiating mathematical expressions, such as sin(x), cos(2y),
exp(x^2), x^2 + 1, f(y), and so on.

To differentiate a standard function, such as sin, exp, heaviside, or a custom
function, such as f:= x -> x^2 + 1, use the differential operator D:
D(sin), D(exp), D(heaviside)cos, exp, dirac

f := x -> x^2 + 1: D(f)x -> 2*x

’ is a shortcut for the differential operator D:
sin’, sin’(x), f’cos, cos(x), x -> 2*x

The command D(f)(x) assumes that f is a univariate function, and
represents the derivative of f at the point x. For example, the derivative of
the sine function at the point x2 is:
D(sin)(x^2)cos(x^2)

Note that in this example you differentiate the sin function, not the function f
:= x -> sin(x^2). Differentiating f returns this result:
f := x -> sin(x^2): D(f)x -> 2*x*cos(x^2)

1-31

1 Getting Started

For details about using the operator D for computing second- and higher-order
derivatives of functions, see Differentiating Functions.

Integration

Indefinite Integrals
To compute integrals use the int command. For example, you can compute
indefinite integrals:
int((cos(x))^3, x)sin(x) - sin(x)^3/3

The int command returns results without an integration constant.

Definite Integrals
To find a definite integral, pass the upper and lower limits of the integration
interval to the int function:
int((cos(x))^3, x = 0..PI/4)(5*sqrt(2))/12

You can use infinity as a limit when computing a definite integral:
int(sin(x)/x, x = -infinity..infinity)PI

Numeric Approximation
If MuPAD cannot evaluate an expression in a closed form, it returns the
expression. For example:
int(sin(x^2)^2, x = -1..1)int(sin(x^2)^2, x = -1..1)

1-32

Perform Computations

You can approximate the value of an integral numerically using the float
command. For example:
float(int(sin(x^2)^2,(x = -1..1)))0.3324031519

You also can use the numeric::int command to evaluate an integral
numerically. For example:
numeric::int(sin(x^2)^2, x = -1..1)0.3324031519

Linear Algebra

Create a Matrix
To create a matrix in MuPAD, use the matrix command:
A := matrix([[1, 2], [3, 4], [5, 6]]); B := matrix([[1, 2, 3], [4, 5, 6]])matrix([[1,
2], [3, 4], [5, 6]])

matrix([[1, 2, 3], [4, 5, 6]])

You also can create vectors using the matrix command:
V := matrix([1, 2, 3])matrix([[1], [2], [3]])

1-33

1 Getting Started

You can explicitly declare the matrix dimensions:
C := matrix(3, 3, [[-1, -2, -3], [-4, -5, -6], [-7, -8, -9]]); W := matrix(1, 3, [1, 2,
3])matrix([[-1, -2, -3], [-4, -5, -6], [-7, -8, -9]])

matrix([[1, 2, 3]])

If you declare matrix dimensions and enter rows or columns shorter than the
declared dimensions, MuPAD pads the matrix with zero elements:
F := matrix(3, 3, [[1, -1, 0], [2, -2]])matrix([[1, -1, 0], [2, -2, 0], [0, 0, 0]])

If you declare matrix dimensions and enter rows or columns longer than the
declared dimensions, MuPAD returns the following error message:
matrix(3, 2, [[-1, -2, -3], [-4, -5, -6], [-7, -8, -9]]) Error: The number of columns
does not match. [(Dom::Matrix(Dom::ExpressionField()))::mkSparse] You also
can create a diagonal matrix:
G := matrix(4, 4, [1, 2, 3, 4], Diagonal)matrix([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0,
3, 0], [0, 0, 0, 4]])

Operate on Matrices
To add, substract, multiply and divide matrices, use standard arithmetic
operators. For example, to multiply two matrices, enter:
A := matrix([[1, 2], [3, 4], [5, 6]]); B := matrix([[1, 2, 3], [4, 5, 6]]);
A*Bmatrix([[1, 2], [3, 4], [5, 6]])

1-34

Perform Computations

matrix([[1, 2, 3], [4, 5, 6]])

matrix([[9, 12, 15], [19, 26, 33], [29, 40, 51]])

If you add number x to a matrix A, MuPAD adds x times an identity matrix to
A. For example:
C := matrix(3, 3, [[-1, -2, -3], [-4, -5, -6], [-7, -8, -9]]); C + 10matrix([[-1, -2, -3],
[-4, -5, -6], [-7, -8, -9]])

matrix([[9, -2, -3], [-4, 5, -6], [-7, -8, 1]])

You can compute the determinant and the inverse of a square matrix:
G := matrix([[1, 2, 0], [2, 1, 2], [0, 2, 1]]); det(G); 1/Gmatrix([[1, 2, 0], [2, 1,
2], [0, 2, 1]])

-7

matrix([[3/7, 2/7, -4/7], [2/7, -1/7, 2/7], [-4/7, 2/7, 3/7]])

1-35

1 Getting Started

Linear Algebra Library
The MuPAD linalg library contains the functions for handling linear
algebraic operations. Using this library, you can perform a wide variety of
computations on matrices and vectors. For example, to find the eigenvalues of
the square matrices G, F, and (A*B), use the linalg::eigenvalue command:
linalg::eigenvalues(G); linalg::eigenvalues(F); linalg::eigenvalues(A*B){1, 1 -
2*sqrt(2), 2*sqrt(2) + 1}

{-1, 0}

{0, 43 - 7*sqrt(37), 7*sqrt(37) + 43}

To see all the functions available in this library, enter info(linalg) in an
input region. You can obtain detailed information about a specific function
by entering ?functionname. For example, to open the help page on the
eigenvalue function, enter ?linalg::eigenvalues.

Solve Equations

Solve Equations with One Variable
To solve a simple algebraic equation with one variable, use the solve command:
solve(x^5 + 3*x^4 - 23*x^3 - 51*x^2 + 94*x + 120 = 0, x){-5, -3, -1, 2, 4}

1-36

Perform Computations

Solving Equations with Parameters
You can solve an equation with symbolic parameters:
solve(a*x^2 + b*x + c = 0, x)piecewise([a <> 0, {-(b + sqrt(b^2 - 4*a*c))/(2*a),
-(b - sqrt(b^2 - 4*a*c))/(2*a)}], [a = 0 and b <> 0, {-c/b}], [a = 0 and b = 0 and c =
0, C_], [a = 0 and b = 0 and c <> 0, {}])

If you want to get the solution for particular values of the parameters, use
the assuming command. For example, you can solve the following equation
assuming that a is positive:
solve(a*x^2 + b*x + c = 0, x) assuming a > 0{-(b + sqrt(b^2 - 4*a*c))/(2*a),
-(b - sqrt(b^2 - 4*a*c))/(2*a)}

For more information, see Using Assumptions.

Solve Systems of Equations
You can solve a system of equations:
solve([x^2 + x*y + y^2 = 1, x^2 - y^2 = 0], [x, y]){[x = -sqrt(3)/3, y = -sqrt(3)/3],
[x = sqrt(3)/3, y = sqrt(3)/3], [x = -1, y = 1], [x = 1, y = -1]}

or you can solve a system of equations containing symbolic parameters:
solve([x^2 + y^2 = a, x^2 - y^2 = b], [x, y]){[x = -(sqrt(2)*sqrt(a + b))/2, y =
-(sqrt(2)*sqrt(a - b))/2], [x = -(sqrt(2)*sqrt(a + b))/2, y = (sqrt(2)*sqrt(a - b))/2],
[x = (sqrt(2)*sqrt(a + b))/2, y = -(sqrt(2)*sqrt(a - b))/2], [x = (sqrt(2)*sqrt(a +
b))/2, y = (sqrt(2)*sqrt(a - b))/2]}

1-37

1 Getting Started

Solve Ordinary Differential Equations
You can solve different types of ordinary differential equations:
o := ode(x^2*diff(y(x), x, x) + 2*x*diff(y(x), x) + x, y(x)): solve(o){C3 - x/2 + C2/x}

Solve Inequalities
Also, you can solve inequalities:
solve(x^4 >= 5, x)Dom::Interval(-infinity, [-5^(1/4)]) union
Dom::Interval([5^(1/4)], infinity) union Dom::ImageSet(z*I, z,
Dom::Interval(-infinity, [-5^(1/4)]) union Dom::Interval([5^(1/4)], infinity))

If you want to get the result over the field of real numbers only, assume that x
is a real number:
assume(x in R_); solve(x^4 >= 5, x)Dom::Interval(-infinity, [-5^(1/4)]) union
Dom::Interval([5^(1/4)], infinity)

You can pick the solutions that are positive:
solve(x^4 >= 5, x) assuming x > 0Dom::Interval([5^(1/4)], infinity)

1-38

Perform Computations

Manipulate Expressions

Transform and Simplify Polynomial Expressions
There are several ways to present a polynomial expression. The standard
polynomial form is a sum of monomials. To get this form of a polynomial
expression, use the expand command:
expand((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 +
1))x^12 - 1

You can factor this expression using the factor command:
factor(x^12 - 1)(x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2
+ 1)

For multivariable expressions, you can specify a variable and collect the terms
with the same powers in this variable:
collect((x - a)^4 + a*x^3 + b^2*x + b*x + 10*a^4 + (b + a*x)^2, x)x^4 +
(-3*a)*x^3 + (7*a^2)*x^2 + (- 4*a^3 + 2*a*b + b^2 + b)*x + 11*a^4 + b^2

For rational expressions, you can use the partfrac command to present the
expression as a sum of fractions (partial fraction decomposition). For example:
partfrac((7*x^2 + 7*x + 6)/(x^3 + 2*x^2 + 2*x + 1))6/(x + 1) + x/(x^2 + x + 1)

MuPAD also provides two general simplification functions: simplify and
Simplify. The simplify function is faster and it can handle most of the
elementary expressions:
simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 +
1))x^12 - 1

1-39

1 Getting Started

The Simplify function searches for simpler results deeper than the simplify
function. The more extensive search makes this function slower than simplify.
The Simplify function allows you to extend the simplification rule set with
your own rules and serves better for transforming more complex expressions.
For the elementary expressions it gives the same result as simplify:
Simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 +
1))x^12 - 1

For the following expression the two simplification functions give different
forms of the same mathematical expression:
f := a* x *(a + 1) + b* y *(y + b* x* y): simplify(f); Simplify(f)x*a^2 + x*a
+ x*b^2*y^2 + b*y^2

b*(b*x + 1)*y^2 + a*x*(a + 1)

Note that there is no universal simplification strategy, because the meaning
of the simplest representation of a symbolic expression cannot be defined
clearly. Different problems require different forms of the same mathematical
expression. You can use the general simplification functions simplify and
Simplify to check if they give a simpler form of the expression you use.

Transform and Simplify Trigonometric Expressions
You also can transform and simplify trigonometric expressions. The functions
for manipulating trigonometric expressions are the same as for polynomial
expressions. For example, to expand a trigonometric expression, use the
expand command:
expand(sin(5*x))16*sin(x)*cos(x)^4 - 12*sin(x)*cos(x)^2 + sin(x)

1-40

Perform Computations

To factor the trigonometric expression, use the factor command:
factor(cos(x)^4 + 4*cos(x)^3*sin(x) + 6*cos(x)^2*sin(x)^2 + 4*cos(x)*sin(x)^3 +
sin(x)^4)(cos(x) + sin(x))^4

You can use the general simplification functions on trigonometric expressions:
simplify(cos(x)^2 + sin(x)^2)1

simplify(cos(x)^4 + sin(x)^4 + sin(x)*cos(x))- sin(2*x)^2/2 + sin(2*x)/2 + 1

Simplify(cos(x)^4 + sin(x)^4 + sin(x)*cos(x))-((sin(2*x) + 1)*(sin(2*x) - 2))/2

Use Assumptions in Your Computations

Solve Expressions with Assumptions
By default, all variables in MuPAD represent complex numbers. When solving
equations or simplifying expressions, the software considers all possible
cases for complex numbers. If you are solving an equation or simplifying an
expression, this default assumption leads to the exact and complete set of
results including complex solutions:
reset()solve(x^(5/2) = 1, x){1, - sqrt(5)/4 - 1/4 - (sqrt(2)*sqrt(5 - sqrt(5))*I)/4, -
sqrt(5)/4 - 1/4 + (sqrt(2)*sqrt(5 - sqrt(5))*I)/4}

1-41

1 Getting Started

To obtain real solutions only, pass the assumption to MuPAD using the
assuming command:
solve(x^(5/2) = 1, x) assuming x in R_{1}

You can make various assumptions on the values that a variable represents.
For example, you can solve an equation assuming that the variable x
represents only positive values:
solve(x^4 - 1 = 0, x) assuming x > 0{1}

You can make multiple assumptions:
solve(x^4 - a = 0, x) assuming a = 16 and x in R_{-2, 2}

Integrate with Assumptions
You can use assumptions when integrating mathematical expressions. For
example, without an assumption on the variable x, the following integral
depends on the sign of the expression x2 - 1:
int(1/abs(x^2 - 1), x)-arctanh(x)/sign(x^2 - 1)

If you know that x > 1, you can pass the assumption to the integral:
int(1/abs(x^2 - 1), x) assuming x > 1-arctanh(x)

1-42

Perform Computations

Simplify Expressions with Assumptions
Using assumptions along with the simplification functions narrows down the
possible values that variables represent and can provide much shorter results
than the simplification functions alone. For example:
simplify(sqrt(x^2 + 2*x + 1) + sqrt(x^2 - 2*x + 1) + sqrt(x^2 + 4*x + 4) +
sqrt(x^2 - 4*x + 4))sqrt((x - 1)^2) + sqrt((x + 1)^2) + sqrt((x - 2)^2) + sqrt((x
+ 2)^2)

versus
simplify(sqrt(x^2 + 2*x + 1) + sqrt(x^2 - 2*x + 1) + sqrt(x^2 + 4*x + 4) +
sqrt(x^2 - 4*x + 4)) assuming x > 24*x

You can pass assumptions to the following functions: expand, simplify, limit,
solve, and int. The Simplify function does not allow assumptions on variables.

1-43

1 Getting Started

Use Graphics

In this section...

“Graphic Options Available in MuPAD” on page 1-44

“Basic Plotting” on page 1-45

“Format Plots” on page 1-51

“Present Graphics” on page 1-62

“Create Animated Graphics” on page 1-64

Graphic Options Available in MuPAD

Basic Plotting Options
MuPAD presents many options for creating and working with graphics and
animations. The simplest way to create a plot in MuPAD is to use the plot
command. Using this command, you can:

• Create 2-D and 3-D function plots

• Specify plotting range

• Create plots for piecewise functions

• Create multiple function plots in one graph

• Create animated 2-D and 3-D function plots

You can format the plot interactively.

Advanced Plotting Options
The plot command provides a basic way to create function plots. For example,
you can:

• Create a 2-D function plot using plot::Function2d.

• Create a 3-D function plot using plot::Function3d.

• Create animated plots.

1-44

Use Graphics

• Create function plots in polar or spherical coordinates.

• Create turtle graphics and Lindenmayer systems.

• Choose colors, fonts, legends, axes appearance, grid lines, tick marks, line,
and marker styles.

• Apply affine transformations to a plot. You can scale, rotate, reflect, or
move a plot.

• Set cameras for a 3-D plot.

• See the MuPAD gallery of plots.

To see all functions available in the MuPAD graphics library, enter:
info(plot)

Basic Plotting

Create 2-D Plots
The simple way to create a 2-D plot of a function is to use the plot command:
plot(sin(x)*cos(3*x))

1-45

1 Getting Started

Create 3-D Plots
The simple way to create a 3-D plot of a function is to use the plot command
with the option #3D:
plot(sin(x)*sin(y), #3D)

Note Note By default, for a function of two variables, the plot command
creates a 2-D animation. Using the option #3D lets you create a 3-D plot
instead of a 2-D animation.

Plot Multiple Functions in One Graph
To plot several functions in one figure, list all the functions, separating them
by commas. MuPAD uses different colors when plotting multiple functions:
plot(sin(x), cos(x), tan(x), cot(x))

1-46

Use Graphics

You can use the sequence generator $ to create a sequence of functions:
plot(sin(k*x) $ k = 1..3)

You also can plot multiple functions in one 3-D graph:
plot(-sqrt(r^2 - x^2 - y^2) $ r = 1..5, #3D)

1-47

1 Getting Started

Specify Plot Ranges
You can specify a range over which to plot a function:
plot(sin(x^3)*exp(x), x = 3..5)

plot(sin(x)*sin(y), x = 0..3, y = 1..3, #3D)

1-48

Use Graphics

For multiple functions plotted in one graph, you can specify one range for
all the functions:
plot(sin(k*x) $ k = 1..5, x = 0..2*PI)

To specify different ranges for multiple functions plotted in one graph, use
different variables:
plot({sin(k*x), k*t^2} $ k = 1..5, x = 0..2*PI, t = -1..1)

1-49

1 Getting Started

Plot Piecewise Functions
To specify a piecewise function, use the piecewise command. You can plot
a piecewise function even if it is undefined at some points. for example,
you can plot the following function although the function is not defined for
-2 < x < -1:
plot(piecewise([x < - 2, - 1], [-1 < x and x < 0, x^2], [0 < x and x < 1, -x^2], [x
> 1, 1]))

1-50

Use Graphics

Format Plots

Enable Plot Formatting Mode
In MuPAD, you can format your graphic results interactively when working
in plot formatting mode. To switch to graphics formatting mode, click any
place on a plot. In this mode, the Object Browser pane appears.

1-51

1 Getting Started

1-52

Use Graphics

If you do not see the Object Browser and Property panes, select

View > Object Browser or click on the toolbar.

The top of the Object Browser pane displays the components of your
graphics such as scene (background), coordinate system, and a function plot.
For further information on the structure of graphics, see The Full Picture:
Graphical Trees.

After you select a component in the Object Browser pane, the bottom of the
pane displays the properties of this component.

1-53

1 Getting Started

Change Background Settings
To change background settings of your graphics, switch to plot formatting
mode and select Scene at the top of the Object Browser pane. The
bottom of the pane shows background properties that you can change. For
example, you can change the background color. To choose the color, select
BackgroundColor and click the ellipsis button.

1-54

Use Graphics

1-55

1 Getting Started

You can use predefined colors or select a color from a more extensive palette.

Modify Axes
To format the axes of your graphics, switch to plot formatting mode and select
Coordinate System at the top of the Object Browser pane. The bottom
of the pane shows axes properties that you can change. For example, you
can add grid lines.

1-56

Use Graphics

1-57

1 Getting Started

Modify Function Plot
To format the function plot, switch to plot formatting mode and select
Function at the top of the Object Browser pane. The bottom of the pane
shows plot properties that you can change. For example, you can change
the color of a function plot.

1-58

Use Graphics

1-59

1 Getting Started

You can use predefined colors or select a color from a more extensive palette.

1-60

Use Graphics

1-61

1 Getting Started

Present Graphics
When you present graphic results in MuPAD, you can move, zoom, and rotate
your graphics. You also can select different components of a plot. When
presenting graphic results, switch to the plot formatting mode. You can use
the following toolbar to manually rotate, move, zoom your plot, and show
coordinates of any point on your plot:

To see the coordinates for a point on your plot, click the point and hold the
mouse button. You can move the cursor while holding the mouse button and
see the coordinates of all the points on the path of the cursor.

1-62

Use Graphics

1-63

1 Getting Started

You can use the toolbar to rotate and zoom your plot automatically. You also
can change the speed for rotation and zooming.

Create Animated Graphics

Creating Animated 2-D Plots
To create an animated plot, use an additional changing parameter for the
function you want to plot. Specify the range for this parameter. The following
example presents an animated plot of a function with the parameter a that
gradually changes value from 2 to 6:
plot(exp(x)*sin(a^2*x), x = 1..2, a = 2..6)

Create Animated 3-D Plots
To create an animated 3-D plot, use an additional changing parameter for the
function you want to plot. Specify the range for this parameter and the option

1-64

Use Graphics

#3D. The following example presents an animated plot of a function with the
parameter a that gradually changes value from 0.1 to 2:
plot(sin(a*x^2 + a*y^2), x = -2..2, y = -2..2, a = 0.1..2, #3D)

Play Animations
MuPAD displays the first frame of an animation as static picture. To play the
animation, click the picture.

When MuPAD plays an animation, the Animation toolbar with the player
controls appears:

1-65

1 Getting Started

Count Backwards
To play an animation forward and then backward, click the Repetition button

and select the option Back and Forth.

You also can specify the range for a parameter so that the initial value is
greater than the final value. The follwoing example creates an animated plot
of the function using the parameter a that gradually changes value from
2 to 0.1:
plot(sin(a*x^2 + a*y^2), x = -2..2, y = -2..2, a = 2..0.1, #3D)

1-66

Format and Export Documents and Graphics

Format and Export Documents and Graphics

In this section...

“Format Text” on page 1-67

“Format Mathematical Expressions” on page 1-75

“Format Expressions in Input Regions” on page 1-77

“Change Default Format Settings” on page 1-81

“Use Frames” on page 1-84

“Use Tables” on page 1-92

“Embed Graphics” on page 1-102

“Work with Links” on page 1-106

“Export Notebooks to HTML, PDF, and Plain Text Formats” on page 1-117

“Save and Export Graphics” on page 1-119

Format Text

Choose Font Style, Size, and Colors
To change the font for a particular piece of text:

1 Select text that you want to format.

2 Select Format>Characters from the main menu or use context menu.

1-67

1 Getting Started

3 In the Character Format dialog box choose the font style, font size, font and
background colors, and effects. The window at the bottom of the dialog box
shows a preview of your changes.

1-68

Format and Export Documents and Graphics

If you want to experiment with different fonts, and see how the formatted
text looks in your notebook, click the Apply button. This button applies
formatting to the selected text and leaves the Character Format dialog box
open. You can change font and color of your text several times without
having to open this dialog box for each change. When you finish formatting,
click OK to close the Character Format dialog box.

1-69

1 Getting Started

1-70

Format and Export Documents and Graphics

To format selected text, you also can use the Format toolbar. If you do not see
the Format toolbar, select View>Toolbars>Format from the main menu.

To change the font size quickly, you can use Format>Increase Size and
Format>Decrease Size or the corresponding buttons on the Format toolbar.

Choose Indention, Spacing, and Alignment
To change paragraphs settings such as indention, spacing, alignment, and
writing direction:

1 Select the paragraphs you want to format.

2 Select Format>Paragraph from the main menu or use the context menu.

1-71

1 Getting Started

1-72

Format and Export Documents and Graphics

3 In the Paragraph Format dialog box choose indention, spacing, alignment,
background color, and writing direction of the text. The writing direction is
a language-specific option that allows you to type from right to left.

If you want to experiment with different paragraph settings, and see how
the formatted text looks in your notebook, click the Apply button. This
button applies formatting to the selected text and leaves the Paragraph
Format dialog box open. You can change paragraph settings several times
without having to open this dialog box for each change. When you finish
formatting, click OK to close the Paragraph Format dialog box:

1-73

1 Getting Started

1-74

Format and Export Documents and Graphics

Format Mathematical Expressions
You can change font style, size, and color of mathematical expressions in text
regions in the same way you format regular text. See Choosing Font Style,
Size, and Colors for more details.

For additional formatting of mathematical expressions:

1 Select Format > Math.

1-75

1 Getting Started

1-76

Format and Export Documents and Graphics

2 Set your formatting preferences. You can define the script size, choose
between inline (embedded in text) or displayed styles, and use the Slant
identifiers check box to italicize variables. Also, you can specify whether
you want to wrap long mathematical expressions to a notebook window size.

If you want to experiment with different settings for mathematical
expressions and see how the formatted expression looks in your notebook,
click Apply. This button applies formatting to the selected text and leaves
the Math Format dialog box open. You can change settings several times
without having to open this dialog box for each change. When you finish
formatting, click OK to close the Math Format dialog box.

Format Expressions in Input Regions
You can change font style, size, and color of mathematical expressions in Text
regions in the same way you format regular text. See Choosing Font Style,
Size, and Colors for more details.

For additional formatting of commands and expression in the input regions:

1 Select Format>Calculation in the main menu.

1-77

1 Getting Started

1-78

Format and Export Documents and Graphics

2 Set your formatting preferences. You can define indentation, spacing at
the top and bottom of the calculation, and width of the left bracket that
encloses the input region.

If you want to experiment with different settings for input regions, and see
how the formatted expressions and commands look in your notebook, click
the Apply button. This button applies formatting to the selected region and
leaves the Calculation Format dialog box open. You can change settings
several times without having to open this dialog box for each change. When
you finish formatting, click OK to close the Calculation Format dialog box.

1-79

1 Getting Started

1-80

Format and Export Documents and Graphics

Change Default Format Settings
If you want to apply a specific format to the whole notebook, you can change
the default settings for particular types of regions. For example, to change
default setting for all commands and expressions in the input and output
regions of a notebook:

1 Select Format > Defaults from the main menu.

1-81

1 Getting Started

1-82

Format and Export Documents and Graphics

2 In the resulting dialog box, use tabs to select the required element. For
input and output regions, select the Calculations tab.

3 From the drop-down menu Format select Input and Output.

1-83

1 Getting Started

4 In the appropriate fields, enter values for the size of indentation, the
spacing at the top and bottom of the calculation, and the width of the left
bracket that encloses each input and output region.

5 Click OK to apply the new default settings and close the Default Formats
dialog box.

Use Frames
If you want to format different parts of a notebook separately, use frames.
Frames can include text, mathematical expressions, and commands. To insert
a frame:

1 Select the place where you want to insert a frame.

2 Select Insert>Frame.

1-84

Format and Export Documents and Graphics

1-85

1 Getting Started

3 Drag the selected part into the frame.

1-86

Format and Export Documents and Graphics

1-87

1 Getting Started

You can change the appearance of the frame. To format a frame:

1 Place cursor inside the frame you want to format.

2 Select Format>Frame from the main menu or right-click to use context
menu.

1-88

Format and Export Documents and Graphics

1-89

1 Getting Started

3 In the appropriate fields of the Frame Format dialog box, type the size of
left margin, frame border size, width of the left bracket that encloses the
input region, and background color.

4 Click OK to apply the new frame settings and close the Frame Format
dialog box.

1-90

Format and Export Documents and Graphics

1-91

1 Getting Started

Use Tables

Create Tables
To insert a table in a notebook:

1 Select the place where you want the table to appear.

2 Select Insert>Table.

1-92

Format and Export Documents and Graphics

1-93

1 Getting Started

3 In the resulting dialog box, select the number of columns and rows and
click OK.

Add and Delete Rows and Columns
To add a row or column to an existing table or delete an existing row or
column:

1 Click a cell where you want to add or delete a row or column.

2 Select Edit>Table from the main menu and select the required action.

1-94

Format and Export Documents and Graphics

1-95

1 Getting Started

If you inserted a row, it appears above the row with the selected cell. If you
inserted a column, it appears to the left from the selected cell.

1-96

Format and Export Documents and Graphics

1-97

1 Getting Started

Format Tables
You can change the appearance of a table in a MuPAD notebook. To format
a table:

1 Click the table you want to format.

2 Select Format>Table from the main menu.

1-98

Format and Export Documents and Graphics

1-99

1 Getting Started

3 In the Table Format dialog box, select your settings:

Position Text wrapping

Margins Cell margins (all margins have the
same size.)

Padding Distance between the text and the
border of a cell

Border Width of the line used to draw cell
borders

Spacing Space between the cells

Background Background color of the cells

If you want to experiment with different settings, and see how the
formatted table looks in your notebook, click the Apply button. This button
applies formatting to the selected table and leaves the Table Format dialog
box open. You can change settings several times without having to open
this dialog box for each change. When you finish formatting, click OK to
close the Table Format dialog box.

1-100

Format and Export Documents and Graphics

1-101

1 Getting Started

Embed Graphics
To insert a picture into a text region:

1 Select the place in a text region where you want to insert a picture.

2 Select Insert>Image from the main menu and browse the image you want
to insert in a notebook.

1-102

Format and Export Documents and Graphics

1-103

1 Getting Started

3 The selected image appears in the original size. You cannot format images
in text regions of a notebook.

1-104

Format and Export Documents and Graphics

1-105

1 Getting Started

Work with Links

Insert Links to Targets in Notebooks

Create Link Targets. You can insert a link to a particular location in the
same notebook or in some other MuPAD notebook. This location is called a
link target. First, use the following procedure to create a link target:

1 Open the notebook in which you want to create a link target.

2 Select the part of the notebook that you want to use as a link target. You
can select any object in a notebook, except for output regions.

3 Select Insert>Link Target to declare the selected part of a notebook as a
link target. Alternatively, use the context menu.

1-106

Format and Export Documents and Graphics

1-107

1 Getting Started

4 In the Create Link Target dialog box, type the name of the link target.

5 Save the notebook that contains the link target.

Add Links. To associate a link with a link target:

1 Open the notebook in which you want to insert a link. This notebook can
be the same one where you defined the link target, or it can be any other
notebook.

2 Select the part of a notebook where you want to create a link.

3 Select Insert>Link from the main menu or use the context menu.

4 In the Create Hyperlink dialog box, select MuPAD Document and the
name of the notebook that you want to link to. The Targets list displays all
link targets available in the selected notebook.

5 In the Targets list, select the link target that you want to use. If you want
to create a link to the top of the notebook, select TOP.

1-108

Format and Export Documents and Graphics

Insert Links Interactively
To insert a link to a MuPAD notebook interactively (without choosing and
naming the target in advance):

1 Open the notebook in which you want to insert a link.

2 Select the part of a notebook where you want to insert the link.

3 From the context menu select Insert link interactively.

1-109

1 Getting Started

4 The following dialog box appears. To continue creating a link, click OK.

5 Open the notebook where you want to insert the link target. If you create a
new notebook, save it before proceeding.

6 Select the part of the notebook to which you want to link.

1-110

Format and Export Documents and Graphics

7 Right-click the selected part. From the context menu, select Interactive
link to this point.

1-111

1 Getting Started

1-112

Format and Export Documents and Graphics

Insert Links to Arbitrary Files
To insert a link to any file on your computer:

1 Select the part of a notebook where you want to insert a link.

2 Select Insert>Link from the main menu or use the context menu.

3 In the Create Hyperlink dialog box select Existing File.

4 Select the file you want to refer to. To select the file, enter the file name in
the Link to field or choose the file from the history list. Alternatively, click
the Open File button , and then browse for the file.

1-113

1 Getting Started

Insert Links to Internet Addresses
To insert a link to an Internet address:

1 Select the part of the notebook where you want to insert a link.

2 Select Insert>Link from the main menu or use the context menu.

3 In the Create Hyperlink dialog box, select Internet.

4 Type an Internet address and click OK. For example, insert a link to the
Web page.

To insert a link to an e-mail address, type mailto: before the address.

1-114

Format and Export Documents and Graphics

Edit Existing Links
To edit a link:

1 Select the link that you want to edit.

2 Select Edit>Link from the main menu or use the context menu.

3 In the Edit Hyperlink dialog box, edit the link. You can change the display
text or the link target or both.

1-115

1 Getting Started

Delete Links
To delete a link:

1 Select the link that you want to delete.

2 Right-click to open the context menu.

3 Select Remove Link

Alternatively, you can use the Edit Hyperlink dialog box to delete a link. To
delete a link by using the Edit Hyperlink dialog box:

1 Select the link that you want to edit.

1-116

Format and Export Documents and Graphics

2 Select Edit>Link from the main menu or use the context menu.

3 In the Edit Hyperlink dialog box, click the Remove Link button.

4 Click OK.

Delete Link Targets
If the list of link targets is very long, finding the correct link target can be
difficult. To make this list shorter, delete link targets that you do not use.
To delete a link target:

1 Find the link target in a notebook. To highlight all link targets in a
notebook, select View>Highlight Link Targets.

2 Select the link target that you want to delete.

3 Select Insert>Link Target from the main menu or use the context menu.

4 In the Edit Link Target dialog box, click Delete.

Export Notebooks to HTML, PDF, and Plain Text
Formats
To export a notebook to HTML, PDF, or plain text format:

1 Select File>Export from the main menu.

2 From the drop-down menu, select the file format to which you want to
export a notebook.

1-117

1 Getting Started

3 In the Export Notebook dialog box, enter a name for the file and click Save.

If you export a MuPAD document with links to PDF format, these links are
replaced by regular text in the resulting PDF file.

1-118

Format and Export Documents and Graphics

Save and Export Graphics

Export Static Plots
To save the resulting plots separately from a notebook:

1 Double-click the plot you want to export. Select File>Export Graphics
from the main menu or right-click to use the context menu.

1-119

1 Getting Started

1-120

Format and Export Documents and Graphics

2 Click Next in the Graphics Export Guide dialog box.

3 Select the file format to which you want to export the image.

1-121

1 Getting Started

4 The next steps depend on the file format you selected. Follow the
instructions in the Export Graphics dialog box.

Choose the Export Format
The appearance of your exported graphics, its quality, and compatibility with
other documents depend on the file format you select for saving graphics. The
set of file formats available for exporting graphics from a MuPAD notebook
could be limited by your operating system and by the type of image.

Vector Formats. You can save an image as a set of vector objects such
as lines and geometric figures. Images in vector formats are resolution
independent and scale almost without quality loss. These images can look
different on different computers. MuPAD supports the following vector
graphics formats:

1-122

Format and Export Documents and Graphics

• XVC/XVZ — the MuPAD native format. You can import the images saved
in this format into a notebook and activate and manipulate them with
the MuPAD notebook graphic tools.

• JVX/JVD — JavaView. Java™ based format for 2-D and 3-D images
that you can embed into HTML Web pages. Exporting an animation to
JavaView, you can choose to export the current view or a sequence of
images.

• EPS — Encapsulated PostScript®. Standard format for publishing images
in scientific articles and books. This format serves best for 2-D images. 3-D
images can loose quality since this format does not support transparency.
You cannot export animations to this format.

• SVG — Scalable Vector Graphics. The format serves for including vector
graphics and animations on Web pages. MuPAD does not support svg
animations. You can only export the current view of an animation in this
format. You cannot export 3-D images to this format.

• WMF — Windows® Metafile. You can use this file format on Windows
operating platforms only.

• PDF — Portable Document Format. You can use this format to export
non-animated 2-D images.

Bitmap Formats. Bitmap formats save an image pixel by pixel allowing the
image to look identical on different computers. To save images in bitmap
format, you need to select the image resolution. The quality of images saved in
bitmap formats depend on the resolution and can be decreased if you scale an
image after saving. MuPAD supports the following bitmap graphics formats:

• PNG

• GIF

• BMP

• JPEG

Save Animations
If you use Windows and Mac OS systems, you can export an animation
created in MuPAD into the special format AVI . To save an animation in

1-123

1 Getting Started

this format, select a compressor from the list of compressors available for
your animation and operating system.

A compressor defines the size of the exported animation and the quality
of images in the animation. Viewing the exported animation requires the
installation of an appropriate compressor.

Export Sequence of Static Images
You can export an animation as a sequence of static images. For example, the
following calculations result in an animated plot:
plot(plot::Function2d(sin(x)), plot::Point2d([x, sin(x)], x=-5..5), plot::Line2d(
[x,-1], [x,1], x=-5..5, LineStyle=Dashed), plot::Line2d([-5,sin(x)], [5,sin(x)],
x=-5..5, LineStyle=Dashed))

1-124

Format and Export Documents and Graphics

To export the resulting plot:

1 Select File>Export Graphics from the main menu or right-click to use
the context menu.

2 Click Next in the Graphics Export Guide dialog box.

3 Select Export whole animation sequence and click Next.

1-125

1 Getting Started

4 Select the format for saving images of the sequence and the file name. A
sequence of numbers automatically appends to the file name you enter. For
example, when you enter image.jvx, you get the following sequence of
files: image.1.jvx, image.2.jvx, and so on. This sequence of file names
displays below the entry field for the file name.

1-126

Format and Export Documents and Graphics

5 Select the number of frames per second. This number defines the total
number of image files you create.

1-127

1 Getting Started

1-128

Use Data Structures

Use Data Structures

In this section...

“Mathematical Expressions” on page 1-129

“Sequences” on page 1-130

“Lists” on page 1-133

“Sets” on page 1-140

“Tables” on page 1-146

“Arrays” on page 1-149

“Vectors and Matrices” on page 1-153

Mathematical Expressions
You can create mathematical expressions using MuPAD objects and operators.
For example, the following equation presents a MuPAD expression:
x + y + 1 + 1/5 + sin(5) = zx + y + sin(5) + 6/5 = z

Precedence levels determine the order in which MuPAD evaluates an
expression. Operators in MuPAD expressions have precedences similar to
the precedences of regular mathematical operators. For example, when you
compute the expression a + b*c, you calculate b*c, and then add a.

To change the evaluation order, use parentheses:
1 + 2*3, (1 + 2)*37, 9

1-129

1 Getting Started

Sequences

Create Sequences
Sequences represent one of the basic data structures. Sequences can contain
arbitrary MuPAD objects. For example, numbers, symbols, strings, or
functions can be entries of a sequence. There are two methods for creating
sequences in MuPAD:

• Separating MuPAD objects with commas

• Using the sequence generator

Separating MuPAD objects with commas creates a sequence of these objects:
sequence := a, b, c, da, b, c, d

As a shortcut for creating a sequence, use the sequence generator $
x^2 $ x = -5..525, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25

or the functional form of the sequence generator:
_seqgen(x^2, x, -5..5)25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25

To create a sequence of identical objects, use the sequence generator:
x^2 $ 7x^2, x^2, x^2, x^2, x^2, x^2, x^2

To create a new sequence using the entries of an existing sequence, use the
sequence generator with the keyword in or the equivalent command _seqin.
For example:
x^y $ y in (a, b, c, d); f(x) $ x in [a, b, c, d]; _seqin(f(x), x, [a, b, c, d])x^a, x^b,
x^c, x^d

1-130

Use Data Structures

f(a), f(b), f(c), f(d)

f(a), f(b), f(c), f(d)

You cannot create nested sequences because MuPAD automatically flattens
them:
sequence := (a, b, c, d); ((a, b, 10), (1, 10, f))a, b, c, d

a, b, 10, 1, 10, f

Access Sequence Entries
To access particular entries of a sequence by their indices, use _index (you can
use square brackets as a shortcut) or op:
sequence := a, b, c, d; sequence[2]; _index(sequence, 2..4); op(sequence, 2);
op(sequence, 2..4)a, b, c, d

b

b, c, d

b

1-131

1 Getting Started

b, c, d

Note Note _index uses the order in which the entries appear on the screen,
and op uses the internal order of the entries. Although for sequences these
orders are the same, for many other data structures they are different. For
details, see the _index help page.

To access an entry counting numbers from the end of a sequence, use negative
numbers:
sequence := a, b, c, d: sequence[-2]c

If you use an indexed assignment without creating a sequence, MuPAD
generates a table instead of a sequence:
S[1] := x: Stable(1 = x)

Add, Replace, or Remove Sequence Entries
To add entries to a sequence, list the sequence and the new entries separating
them with commas:
sequence := a, b, c: sequence := sequence, d, ea, b, c, d, e

To concatenate sequences, list the sequences separating them with commas:
sequence1 := a, b, c: sequence2 := t^3 $ t = 0..3: sequence3 := sequence1,
sequence2a, b, c, 0, 1, 8, 27

1-132

Use Data Structures

To replace an entry of a sequence by a MuPAD object, access the entry by its
index, and assign the new value to the entry:
sequence := a, b, c, d: sequence[1] := NewEntry: sequence[2] := 1, 2, 3:
sequence[-1] := matrix([[1, 2, 3], [5, 6, 7]]): sequenceNewEntry, 1, 2, 3, c,
matrix([[1, 2, 3], [5, 6, 7]])

To remove an entry from a sequence, use the delete command:
sequence := a, b, c, d: delete sequence[2]; sequencea, c, d

Lists

Create Lists
Lists represent ordered data structures. Lists can contain arbitrary MuPAD
objects. For example, numbers, symbols, strings, or functions can be entries of
a list. To create a list, separate MuPAD objects with commas and enclose the
structure in brackets:
list := [a, b, c, d][a, b, c, d]

Also, you can create a sequence, and convert it to a list. To convert a sequence
to a list, enclose the sequence in brackets. As a shortcut for creating a
sequence, use the sequence generator $ or its functional form _seqgen.
Enclose the sequence in brakets:
[i*(i-1) $ i = 1..10]; [i $ 10][0, 2, 6, 12, 20, 30, 42, 56, 72, 90]

[i, i, i, i, i, i, i, i, i, i]

1-133

1 Getting Started

A list can contain lists as entries:
list1 := [1, list, 2][1, [a, b, c, d], 2]

A list can be empty:
empty_list := [][]

MuPAD does not flatten lists like it flattens sequences. You can create nested
lists:
list1 := [1, 2]: list2 := [5, 6]: list3 := [list1, 3, 4, list2][[1, 2], 3, 4, [5, 6]]

Access List Entries
There are two ways to access particular entries of a list by their indices:

• If you want to use the order in which the entries appear on the screen,
use brackets or _index.

• If you want to use the internal order of a list, use op.

In general, these two indices of an entry of a data structure can be different.
For lists, the internal order is the same as what you see on the screen:
list := [a, b, c, d, e, f]: list[2]; _index(list, 3..5); op(list, 2); op(list, 3..5)b

[c, d, e]

b

c, d, e

1-134

Use Data Structures

To access an entry counting numbers from the end of a list, use negative
numbers:
list := [a, b, c, d, e, f]: list[-2]e

If you use an indexed assignment without creating a list, MuPAD generates a
table instead of a list:
L[1] := x: Ltable(1 = x)

Operate on Lists
MuPAD lists support the following operations:

• Verifying that a list contains a particular object

• Using a list as a function in a function call

• Applying a function to all entries of a list

• Extracting entries of a list

• Dividing a list accoring to particular properties of its entries

• Arithmetical operations on lists

To check if an object belongs to a list, use the contains command. The
command returns the position of the first occurrence of the object in the list.
If the object does not belong to the list, contains returns 0:
list := [(i-5)/7 $ i = 10..20]; contains(list, 1); contains(list, -1)[5/7, 6/7, 1, 8/7,
9/7, 10/7, 11/7, 12/7, 13/7, 2, 15/7]

3

1-135

1 Getting Started

0

If you use a list as the function in a function call, MuPAD returns the list
of appropriate function calls:
[sin, cos, tan, f](x); [sin, cos, tan, f](0.1)[sin(x), cos(x), tan(x), f(x)]

[0.09983341665, 0.9950041653, 0.1003346721, f(0.1)]

To apply a function to all entries of a list, use the function map:
map([x, 0.1, 1/5, PI], sin); map([x, 0.1, 1/5, PI], ‘+‘, a, 1)[sin(x), 0.09983341665,
sin(1/5), 0]

[a + x + 1, a + 1.1, a + 6/5, PI + a + 1]

To extract entries with particular properties from a list, use the select
command:
select([i $ i = 1..20], isprime)[2, 3, 5, 7, 11, 13, 17, 19]

To divide a list into three lists according to particular properties, use the
split command:
split([i $ i = 1..10], isprime)[[2, 3, 5, 7], [1, 4, 6, 8, 9, 10], []]

1-136

Use Data Structures

The resulting three lists contain:

• Entries with the required properties

• Entries without the required properties

• Entries for which the required properties are unknown.

MuPAD supports the following arithmetical operations on lists: addition,
substraction, multiplication, division, and power. The lists you operate on
must contain an equal number of entries. MuPAD forms a new list containing
the entries of the existing lists combined pairwise:
list1 := [a, b, c]: list2 := [d, e, f]: list1 + list2; list1*list2; list1^list2[a + d,
b + e, c + f]

[a*d, b*e, c*f]

[a^d, b^e, c^f]

When you combine a list and a scalar, MuPAD combines a scalar with each
entry of a list. For example:
list1 := [a, b, c]: list1 + a; list1^5; list1*(a + 5)[2*a, a + b, a + c]

[a^5, b^5, c^5]

[a*(a + 5), b*(a + 5), c*(a + 5)]

1-137

1 Getting Started

Note Note Combining a scalar and a list differs from combining a scalar
and a matrix.

When you add a scalar to a matrix, MuPAD adds the scalar multiplied by an
identity matrix to the original matrix. For example, define a matrix M as
follows. Add the variable a the matrix M:
M := matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]): M + amatrix([[a + 1, 2, 3], [4, a
+ 5, 6], [7, 8, a + 9]])

Now define the rows of the matrix M by the following three lists. Add the
variable a to each list. MuPAD adds the variable a to each entry of the three
lists:
list1 := [1, 2, 3]: list2 := [4, 5, 6]: list3 := [7, 8, 9]: matrix([list1 + a, list2 + a,
list3 + a]);matrix([[a + 1, a + 2, a + 3], [a + 4, a + 5, a + 6], [a + 7, a + 8, a + 9]])

When you combine a scalar and an empty list, the result is an empty list:
[] + 2[]

MuPAD lets you combine nested lists:
[[a, b], c, d] + 1; [[a, b], c, d] + [1, 2, 3][[a + 1, b + 1], c + 1, d + 1]

[[a + 1, b + 1], c + 2, d + 3]

1-138

Use Data Structures

To combine lists with unequal numbers of entries, use the zip command. By
default, the resulting list has the same number of entries as the shortest list:
list1 := [a, b]: list2 := [d, e, f]: zip(list1, list2, _plus); zip(list1, list2, _mult);
zip(list1, list2, _power)[a + d, b + e]

[a*d, b*e]

[a^d, b^e]

To produce the list with the number of entries equal to the longer list, use a
default value as additional parameter:
zip(list1, list2, _plus, 100)[a + d, b + e, f + 100]

Add, Replace, or Remove List Entries
To add new entries to the end of a list, use the append command or the
. (dot) operator:
list := [a, b, c]: list := append(list, d, e, f); list := list.[1, 2, 3, 4][a, b, c, d, e, f]

[a, b, c, d, e, f, 1, 2, 3, 4]

To concatenate lists, use the operator ’.’ (dot) or its functional form _concat:
list1 := [a, b, c]: list2 := [t^3 $ t = 0..3]: list3 := list1.list2; list4 := _concat(list2,
list1)[a, b, c, 0, 1, 8, 27]

1-139

1 Getting Started

[0, 1, 8, 27, a, b, c]

You can replace an entry of a list:
list := [a, b, c, d, e]: list[1] := newEntry: list[2] := [1, 2, 3]: list[-1] := matrix([[1,
2, 3], [5, 6, 7]]): list[newEntry, [1, 2, 3], c, d, matrix([[1, 2, 3], [5, 6, 7]])]

To remove an entry from a list, use the delete command:
list := [a, b, c, d, e, f]: delete list[-1]; list[a, b, c, d, e]

Sets

Create Sets
Sets represent unordered mathematical structures. Sets can contain arbitrary
MuPAD objects. For example, numbers, symbols, strings, or functions can
be elements of a set. To create a set, separate MuPAD objects with commas
and enclose the structure in braces:
set1 := {a, 3, b, c, d, 180, -15}{-15, 3, 180, a, b, c, d}

Also, you can create a sequence, and convert it to a set. To convert a sequence
to a set, enclose the sequence in braces. As a shortcut for creating a sequence,
use the sequence generator $ or its functional form _seqgen. Enclose the
sequence in braces:
{i*(i-1) $ i = 1..10}{0, 2, 6, 12, 20, 30, 42, 56, 72, 90}

1-140

Use Data Structures

The order of the elements in a set does not depend on the order in which you
insert them. If an order of elements is important, use a list instead of a set:
[a, 3, b, c, d, 180, -15][a, 3, b, c, d, 180, -15]

MuPAD does not necessarily sort the elements of a set alphabetically:
set2 := {tan, sin, cos}{sin, tan, cos}

A set cannot contain duplicate elements. When creating a set, MuPAD
automatically removes duplicates:
set3 := {2, 6, 7, a, 6, 2, 2, a, b}{2, 6, 7, a, b}

A set can be empty:
empty_set := {}{}

Access Set Elements
The position of an element of a set in an output region can differ from the
internal position of the element in a set. To access an element in a set by its
internal position, use the op command:
set2 := {[c,a,b], [b,c,a], [a,b,c]}; op(set2, 1), op(set2, 2), op(set2, 3){[a, b, c],
[b, c, a], [c, a, b]}

[c, a, b], [b, c, a], [a, b, c]

1-141

1 Getting Started

When using a notebook interactively, you can access an element of a set by its
position in an output region. To access an element by the position as you see
it on screen, use brackets or _index:
set2 := {[c,a,b], [b,c,a], [a,b,c]}: set2[1]; _index(set2, 3)[a, b, c]

[c, a, b]

You can access particular solutions from a set returned by the solve command.
To use the order of elements of a set as they appear on screen, use brackets or
_index:
solutions := solve(x^4 = 1, x); solutions[3]; _index(solutions, 2..4){-1, 1, -I, I}

-I

{1, -I, I}

If you use an indexed assignment without creating a set, MuPAD generates a
table instead of a set:
set[1] := x: settable(1 = x)

Operate on Sets
MuPAD sets support the following operations:

• Defining an object as a member of a set

• Verifying that a set contains a particular object

1-142

Use Data Structures

• Using a set as a function in a function call

• Applying a function to all elements of a set

• Extracting entries of a set

• Computing the intersection of sets

• Dividing a set according to particular properties of its elements

To define an object as a member of a set, use the in command:
x in {1, 2, 3, a, d, 5}x in {1, 2, 3, 5, a, d}

To check if an object belongs to a set, use the contains command:
set := {a, 3, b, c, d, 180, -15}: contains(set, d); contains(set, e);TRUE

FALSE

If you use a set as the function in a function call, MuPAD returns the set
of appropriate function calls:
{sin, cos, tan, f}(x); {sin, cos, tan, f}(0.1){cos(x), f(x), sin(x), tan(x)}

{0.09983341665, 0.1003346721, 0.9950041653, f(0.1)}

To apply a function to all elements of a set, use the function map:
map({x, 0.1, 1/5, PI}, sin){0, 0.09983341665, sin(1/5), sin(x)}

1-143

1 Getting Started

To extract elements with particular properties from a set, use the select
command:
select({{a, x, b}, {a}, {x, 1}}, contains, x){{1, x}, {a, b, x}}

To find the intersection of sets, use the intersect command:
S := {1,2,3}: S intersect {2,3,4};{2, 3}

To divide a set into three sets according to particular properties, use the
split command:
split({{a, x, b}, {a}, {x, 1}}, contains, x)[{{1, x}, {a, b, x}}, {{a}}, {}]

The resulting three sets contain:

• Elements with the required properties

• Elements without the required properties

• Elements for which the required properties are unknown.

Add, Replace, or Remove Set Elements
To add elements to a set:

1 Create a set containing the elements you want to add.

2 Combine the old and the new sets using the union command.

set := {a, b, c}: set := set union {d, e, f}{a, b, c, d, e, f}

1-144

Use Data Structures

To replace an element of a set, use the subs command. The new element does
not necessarily appear in place of the old one:
set4 := {a, b, 2, 6, 7}; subs(set4, a = 1){2, 6, 7, a, b}

{1, 2, 6, 7, b}

Note When you replace and delete elements of a set, the order of its elements
can change even if you delete or replace the last element.

When replacing or deleting an element, always check that you access the
element at the correct position:
set4; op(set4, 4){2, 6, 7, a, b}

6

The subs command does not modify the original set:
set4 := {a, b, 2, 6, 7}: subs(set4, a = 1); set4{1, 2, 6, 7, b}

{2, 6, 7, a, b}

To delete elements from a set, use the minus command. You can
simultaneously delete several elements of a set:
set5 := {1, 2, 6, 7, b}: set5 minus {1, b}{2, 6, 7}

1-145

1 Getting Started

Tables

Create Tables
Tables associate arbitrary indices with arbitrary values. For example, you can
use tables to represent collections of equations in the form index = value.
To generate a table, use the table command:
T := table(a = b, c = d)table(c = d, a = b)

You can create tables from equations, existing tables, lists, or sets of
equations:
table(s = t, T, [x = 6], {y = 13})table(y = 13, x = 6, s = t, c = d, a = b)

MuPAD inserts index-value pairs in a table in the same order as you enter
them. Each new entry can override previous entries. The order of output
does not reflect the order of input:
T1 := table([5 = a, 12 = c]): T2 := table([a = 5, c = 12]): T3 := table(5 = b, T1,
T2, [a = 6], {c = 13})table(c = 13, a = 6, 12 = c, 5 = a)

Access Table Elements
To access an entry of a table, use brackets or _index:
T := table(a = 11, c = 12): T[a]; _index(T, c)11

1-146

Use Data Structures

12

To access a value entry of a table by its index, also use brackets or _index:
T := table(a = 11, c = 12): T[c]12

If an index does not exist, you get:
T[b]; table(a = 11, c = 12)[b]T[b]

table(c = 12, a = 11)[b]

Before accessing a value entry of a table by its index, check that the index is
available for the table:
contains(T, b); contains(T, a); T[a]FALSE

TRUE

11

Operate on Tables
MuPAD tables support the following operations:

• Extracting contents of a table as a collection of equations

1-147

1 Getting Started

• Listing indices and values separately

• Verifying that a table contains a particular object

• Searching for an object among the indices and the values a table

To extract the contents of a table as a collection of equations, use the op
command:
op(T)a = 11, c = 12

You can list indices and values of a table separately:
leftSide := lhs(T); rightSide := rhs(T)[a, c]

[11, 12]

To check if an object belongs to the indices of a table, use the contains
command:
T := table(a = 11, c = 12): contains(T, a); contains(T, 11)TRUE

FALSE

If you want to search for an object among the indices and the values of a
table, use the has command:
T := table(a = 11, c = 12): has(T, 11); has(T, c); has(T, x)TRUE

TRUE

1-148

Use Data Structures

FALSE

Replace or Remove Table Entries
To replace an entry of a table, access the entry by its index, and assign the
new value to the entry:
T := table(a = 11, c = 12): T[a] := 5: Ttable(c = 12, a = 5)

To remove an entry from a table, use the delete command:
delete(T[a]): T;table(c = 12)

Arrays

Create Arrays
Arrays represent multidimensional data structures. You can use only integers
for array indices. To generate an array, use the array command:
A := array(0..2, 0..3); B := array(0..2, 0..3, 0..4)array(0..2, 0..3)

array(0..2, 0..3, 0..4) For two-dimensional arrays, the first range defines the
number of rows, the second range defines the number of columns. Ranges for
array indices do not necessarily start with 0 or 1:
A := array(3..5, 1..2)array(3..5, 1..2)

1-149

1 Getting Started

Access Array Entries
To access an entry of an array, use brackets or _index:
A := array(0..1, 0..2, [[1, 2, 3], [a, b, c]]); A[0, 2]; _index(A, 1, 1)array(0..1, 0..2,
(0, 0) = 1, (0, 1) = 2, (0, 2) = 3, (1, 0) = a, (1, 1) = b, (1, 2) = c)

3

b

Operate on Arrays
MuPAD arrays support the following operations:

• Assigning values to the entries of arrays

• Comparing arrays

MuPAD does not support arithmetical operations on arrays.

You can assign values to the entries of an array:
A := array(0..1, 0..2): A[0, 0] := 1: A[0, 1] := 2: A[0, 2] := 3: A[1, 0] := a: A[1,
1] := b: A[1, 2] := c: Aarray(0..1, 0..2, (0, 0) = 1, (0, 1) = 2, (0, 2) = 3, (1, 0) =
a, (1, 1) = b, (1, 2) = c)

You also can provide the values of the entries while creating an array:

1-150

Use Data Structures

A := array(0..1, 0..2, [[1, 2, 3], [a, b, c]]); B := array(1..2, 1..3, 1..5, [[[[i, j, k] $
k=1..5] $ j=1..3] $ i=1..2]): B[2,3,4]array(0..1, 0..2, (0, 0) = 1, (0, 1) = 2, (0, 2)
= 3, (1, 0) = a, (1, 1) = b, (1, 2) = c)

[2, 3, 4]

MuPAD accepts nested and flat lists as array entries:
array([[1, 2, 3], [a, b, c]]); array(1..2, 1..3, [1, 2, 3, a, b, c]);array(1..2, 1..3, (1, 1)
= 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = a, (2, 2) = b, (2, 3) = c)

array(1..2, 1..3, (1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = a, (2, 2) = b, (2, 3) = c)

When comparing arrays, MuPAD compares both indices and values of the
entries. By default, indices start with 1:
A1 := array([[1, 2, 3], [a, b, c]]): A2 := array(0..1, 0..2, [1, 2, 3, a, b, c]): A3 :=
array(1..2, 1..3, [1, 2, 3, a, b, c]): bool(A1 = A2); bool(A1 = A3)FALSE

TRUE

You cannot use arithmetical operations on arrays:
A1 + A2 Error: The operand is invalid. [_plus] To use arithmetical operations,
convert arrays to matrices. For numeric data, you also can use Arrays with
Hardware Floating-Point Numbers.

1-151

1 Getting Started

Replace or Remove Array Entries
To replace an entry of an array, access the entry by its index, and assign
the new value to the entry:
A := array(0..1, 0..2, [[1, 2, 3], [a, b, c]]): A[0, 2] := NewValue: Aarray(0..1, 0..2,
(0, 0) = 1, (0, 1) = 2, (0, 2) = NewValue, (1, 0) = a, (1, 1) = b, (1, 2) = c)

To remove entries from an array, use the delete command. When you remove
an entry of an array, the dimensions of an array do not change. MuPAD
changes the entry value you remove to NIL:
A := array(0..1, 0..2, [[1, 2, 3], [a, b, c]]): delete(A[0, 2]): Aarray(0..1, 0..2, (0, 0)
= 1, (0, 1) = 2, (1, 0) = a, (1, 1) = b, (1, 2) = c)

Arrays with Hardware Floating-Point Numbers
To create an array of hardware floating-point numbers, use the hfarray
command. An array can contain complex floating-point numbers:
A := hfarray(0..1, 0..2, [[1, 2/3, I/3], [I, exp(1), PI]])hfarray(0..1, 0..2, [1.0,
0.6666666667, 0.3333333333*I, 1.0*I, 2.718281828, 3.141592654])

Arrays of hardware floating-point numbers use less memory than regular
arrays and matrices. You can use basic arithmetical operations on these
arrays:
A + 2*Ahfarray(0..1, 0..2, [3.0, 2.0, 1.0*I, 3.0*I, 8.154845485, 9.424777961])

1-152

Use Data Structures

Vectors and Matrices

Create Matrices
The simplest way to create a matrix in MuPAD is to use the matrix command:
A := matrix([[a, b, c], [1, 2, 3]])matrix([[a, b, c], [1, 2, 3]])

If you declare matrix dimensions and enter rows or columns shorter than the
declared dimensions, MuPAD pads the matrix with zero elements:
A := matrix(2, 4, [[a, b, c], [1, 2, 3]])matrix([[a, b, c, 0], [1, 2, 3, 0]])

If you declare matrix dimensions and enter rows or columns longer than the
declared dimensions, MuPAD returns the following error message:
A := matrix(2, 1, [[a, b, c], [1, 2, 3]]) Error: The number of columns does not
match. [(Dom::Matrix(Dom::ExpressionField()))::mkSparse] As a shortcut for
providing elements of a matrix, you can use the -> command:
A := matrix(5, 5, (i, j) -> i*j)matrix([[1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12,
15], [4, 8, 12, 16, 20], [5, 10, 15, 20, 25]])

Create Vectors
To create a vector, also use the matrix command. The command matrix([[x],
[y], [z]]) creates a column vector. As a shortcut for creating a column
vector, use:
a := matrix([x, y, z])matrix([[x], [y], [z]])

1-153

1 Getting Started

To create a row vector, declare the vector dimensions or use double brackets:
b1 := matrix(1, 3, [x, y, z]); b2 := matrix([[x, y, z]])matrix([[x, y, z]])

matrix([[x, y, z]])

Combine Vectors into a Matrix
To create a matrix, you also can combine vectors by using the concatenation
operator (.):
v := matrix([1,2,3]); w := matrix([4,5,6]); A := v.w;matrix([[1], [2], [3]])

matrix([[4], [5], [6]])

matrix([[1, 4], [2, 5], [3, 6]])

Matrices Versus Arrays
Matrices and arrays are different data types:

Matrices Arrays

Data containers with defined
standard mathematical operations

Data containers for storing only

Slow access to data Fast access to data

One- or two-dimensional Multidimensional

1-154

Use Data Structures

Convert Matrices and Arrays
To create a matrix from an array, use the matrix command:
A := array([[1, 2, 3], [x, y, z]]): B := matrix(A): type(A); type(B)DOM_ARRAY

Dom::Matrix()

To convert a matrix into an array, use the expr command:
C := expr(B): type(C)DOM_ARRAY

To convert a matrix or an array to a sequence, use the op command:
op(B); op(C)1, 2, 3, x, y, z

1, 2, 3, x, y, z

To convert a matrix or an array to a list or a set:

1 Convert a matrix or an array to a sequence using the op command.

2 Create a list or a set from the sequence.

1-155

1 Getting Started

Use the MuPAD Libraries

In this section...

“Overview of Libraries” on page 1-156

“Standard Library” on page 1-158

“Find Information About a Library” on page 1-158

“Avoid Name Conflicts Between MuPAD Objects and Library Functions” on
page 1-159

Overview of Libraries
Libraries contain most of the MuPAD functionality. Each library includes a
collection of functions for solving particular types of mathematical problems:

combinat supports combinatorics operations

solvelib contains various methods used by
the function solve

export supports exporting MuPAD data to
external formats

output supports formatted output of the
MuPAD data

fp supports functional programming
methods

generate supports conversion of the MuPAD
expressions to C, FORTRAN,
MATLAB, and TeX codes

groebner supports operating on ideals of
multivariate polynomial rings over
a field

import supports importing external data to
MuPAD

transform supports integral transformations
and the discrete Z-transform

1-156

Use the MuPAD Libraries

intlib supports manipulating and solving
integrals

linalg supports linear algebra operations

linopt provides algorithms for linear and
integer programming

listlib supports manipulating lists

polylib supports manipulating polynomials

stringlib supports manipulating strings

numlib supports number theory operations

numeric provides algorithms for numeric
mathematics

ode supports manipulating and solving
ordinary differential equations

orthpoly provides a set of standard orthogonal
polynomials

Pref supports setting and restoring user
preferences

prog provides programming utilities for
analyzing functions and tracing
errors

stats provides methods for statistical
analysis

Type supports checking types of MuPAD
objects

Symbol supports typesetting symbols

Functions included in libraries are written in the MuPAD language.
The calling syntax for functions from all the libraries (except for the
standard library) includes both the library name and the function name:
library::function.

1-157

1 Getting Started

Standard Library
The standard library presents the set of most frequently used functions
including diff, int, simplify, solve, and other functions. For example:
diff(x^2,x)2*x

Find Information About a Library
You can get information about the libraries using the info and help commands.
The info command gives a list of functions of a particular library. For
example, the numlib library presents a collection of functions for number
theory operations:
info(numlib) Library ’numlib’: the package for elementary
number theory -- Interface: numlib::Lambda, numlib::Omega,
numlib::checkPrimalityCertificate,numlib::contfrac,
numlib::contfracPeriodic, numlib::cornacchia,numlib::decimal,
numlib::divisors, numlib::ecm,numlib::factorGaussInt,
numlib::fibonacci, numlib::fromAscii,numlib::g_adic,
numlib::ichrem, numlib::igcdmult,numlib::invphi,
numlib::ispower, numlib::isquadres,numlib::issqr,
numlib::jacobi, numlib::lambda,numlib::legendre,
numlib::lincongruence, numlib::mersenne,numlib::moebius,
numlib::mpqs, numlib::mroots,numlib::msqrts,
numlib::numdivisors, numlib::numprimedivisors,numlib::omega,
numlib::order, numlib::phi,numlib::pi, numlib::pollard,
numlib::primedivisors,numlib::primroot, numlib::proveprime,
numlib::reconstructRational,numlib::sigma, numlib::sqrt2cfrac,
numlib::sqrtmodp,numlib::sumOfDigits, numlib::sumdivisors,
numlib::tau,numlib::toAscii, To see brief information about a particular
library function, use the mouse pointer to hover the cursor over the function
name.

For more information about the library and for information about the library
functions, enter:
?numlibTo see the implementation of a library function, use the expose
command:
expose(numlib::tau) proc(a) name numlib::tau; begin if args(0) <> 1 then
error(message("symbolic:numlib:IncorrectNumberOfArguments")) else if not

1-158

Use the MuPAD Libraries

testtype(a, Type::Numeric) then return(procname(args())) else if domtype(a)
<> DOM_INT then error(message("symbolic:numlib:ArgumentInteger"))
end_if end_if end_if; numlib::numdivisors(a) end_proc

Avoid Name Conflicts Between MuPAD Objects and
Library Functions
You can call any library function (except for the standard library functions)
using the following syntax: library::function. If you frequently use some
functions that do not belong to the standard library, it is possible to call them
without specifying the library name. The use command exports functions
of the MuPAD libraries to the global namespace allowing you to call them
without using the library names. For example, you can export the function
that computes the decimal expansion of a rational number:
use(numlib,decimal): decimal(1/3)0, [3]

After exporting the decimal function, you can use it without using the library
name numlib:
decimal(1/200)0, 0, 0, 5

To call the info, help, or ? commands, use the full name of an exported
function including the name of a library:
?numlib::decimalYou cannot export a library function with the same name
you use for another object:
hilbert := x: use(linalg, hilbert) Warning: Identifier ’hilbert’ already has a
value. It is not exported. [use] After clearing the variable decimal, you can
export a function:
delete hilbert: use(linalg, hilbert): hilbert(3)matrix([[1, 1/2, 1/3], [1/2, 1/3,
1/4], [1/3, 1/4, 1/5]])

1-159

1 Getting Started

You also can export several functions from the same library simultaneously.
For example, you can export the functions for finding the sum of digits and
the set of positive divisors of an integer:
use(numlib, sumOfDigits, divisors): divisors(21); sumOfDigits(21)[1, 3, 7, 21]

3

To export all functions of a library, pass the library name to the use command.
If some of the library functions have name conflicts with other objects, the use
command issues a warning for each name conflict:
use(numeric) Warning: Identifier ’product’ already has a value. It is not
exported. [use] Warning: Identifier ’int’ already has a value. It is not exported.
[use] Warning: Identifier ’indets’ already has a value. It is not exported.
[use] Warning: Identifier ’det’ already has a value. It is not exported. [use]
Warning: Identifier ’linsolve’ already has a value. It is not exported. [use]
Warning: Identifier ’rationalize’ already has a value. It is not exported. [use]
Warning: Identifier ’inverse’ already has a value. It is not exported. [use]
Warning: Identifier ’solve’ already has a value. It is not exported. [use]
Warning: Identifier ’sum’ already has a value. It is not exported. [use]
Warning: Identifier ’sort’ already has a value. It is not exported. [use] These
library functions have the same names as the standard library functions. You
cannot delete standard library functions and resolve the name conflicts. Use
the full function names such as numeric::product to call these functions.

1-160

Programming Basics

Programming Basics

In this section...

“Conditional Control” on page 1-161

“Loops” on page 1-164

“Procedures” on page 1-171

“Functions” on page 1-176

“Shortcut for Closing Statements” on page 1-178

Conditional Control

Use if Statements
You can execute different groups of statements depending on particular
conditions. Use if to define a condition, and use then to define the group of
statements you want to execute when the condition is true:
x := -3: if x < 0 then y := x + 2; x := -x; print(x, y) end_if:3, -1

You also can define the group of statements that you want to execute when
the condition is false:
x := 3: if x < 0 then y := x + 2; x := -x; print(x, y) else y := x + 2; x := x; print(x,
y) end_if3, 5

MuPAD does not require parentheses around conditions:
x := 10: if testtype(x, Type::Positive) = TRUE and type(x) = DOM_INT then
print(Unquoted, "x = ".x." is a positive integer"); end_if x = 10 is a positive
integer

1-161

1 Getting Started

Apply Multiple Conditions
You can use multiple conditions in conditional statements. Combine multiple
conditions by the logical operators:
x := 5: y := 6: if x > 0 and 1 - y > 0 then print(Unquoted, "the condition is true")
else print(Unquoted, "the condition is false") end_if: the condition is false x :=
5: y := 6: if x > 0 or 1 - y > 0 then print(Unquoted, "the condition is true") else
print(Unquoted, "the condition is false") end_if: the condition is true delete x, y

Use Nested Conditional Statements
MuPAD supports the use of nested conditional statements. For example:
x := 5: if testtype(x, DOM_COMPLEX) = TRUE then print("The Heaviside
function is undefined for complex numbers") else if x = 0 then heavisideX := 1/2
else if x < 0 then heavisideX := 0 else heavisideX := 1 end_if: end_if; end_if1

For nested if ... else if, use the elif command as a shortcut:
x := 0: if (testtype(x, DOM_COMPLEX) = TRUE) then print("The Heaviside
function is undefined for complex numbers") elif x = 0 then heavisideX := 1/2
elif x < 0 then heavisideX := 0 else heavisideX := 1; end_if1/2

delete x, a, heavisideX

Use case and otherwise Statements
To choose between several cases, use the case command. The case statement
looks for the first valid condition. After that, it executes all the statements
between this condition and the keyword end_if, without checking the
conditions:
x := 4: case x of 1 do of 2 do of 3 do print("three or less") of 4 do print("four") of
5 do print("five") otherwise print("6 or more") end_case:"four"

"five"

1-162

Programming Basics

"6 or more"

To exit the case statement after executing the statements written under
the first valid condition, use the break command. See Exiting a Conditional
Statement for more details.

Note Note MuPAD executes the case statements differently from MATLAB.
MATLAB executes only the first matching case statement and skips the
following case statements. In MuPAD, you must use the break command to
stop execution of the following statements.

delete x

Exit a Conditional Statement
To exit a conditional statement after executing the statements written under
the first valid condition, use the break command. For example, select the
meaning of the traffic light signals:
trafficLight := yellow: case trafficLight of red do print(Stop); break; of yellow
do print(Caution); break; of green do print(Go); break; end_caseCaution

delete x, a, trafficLight

Return Value of a Conditional Statement
All MuPAD commands produce some return values. Conditional statements
return the result of the last executed command:
mapColor := blue: if mapColor = blue then "water" else "land" end_if"water"

1-163

1 Getting Started

Use the return value of a conditional statement like any other value. For
example, assign the return value to a variable. By default, MuPAD does not
allow conditional statements in assignments. To create a valid assignment,
enclose conditional statements in parentheses. Suppress the output of the
return value of a conditional statement with a colon:
mapColor := blue: terrain := (if mapColor = blue then "water" else "land"
end_if):Write a sentence by concatenating the following string and the
variable terrain:
print(Unquoted, "Blue color on maps usually shows ".terrain) Blue color on
maps usually shows water The following case statement also returns the
result of the last assignment:
palette := color: case palette of monochrome do [color1, color2] := [black,
white]; break; of color do [color1, color2, color3] := [red, green, blue]; break;
end_case[red, green, blue]

delete terrain, color1, color2, color3

Display Intermediate Results
By default, MuPAD does not display intermediate results obtained inside a
conditional statement even if you use semicolons after statements. To see
intermediate results, use the print command inside a conditional statement:
Omega := 2: if Omega > PI/2 and Omega < PI then signSinOmega := 1;
signCosOmega := -1; print(signSinOmega, signCosOmega) end_if:1, -1

delete Omega, signSinOmega, signCosOmega

Loops

Use Loops with a Fixed Number of Iterations (for Loops)
The for loop repeats a group of statements for a fixed number of iterations.
The loop starts with the command for and ends with end_for or just end.
MuPAD executes all statements between these two words as many times as
you specify. For example, compute the factorial of an integer using the loop:
x := 1: for i from 1 to 5 do x := x * i; end_for120

1-164

Programming Basics

More Efficient Alternative to for Loops. You often can speed up the
execution of MuPAD code by replacing for loops with the sequence generator
$. For example, instead of the loop
x := 1: for i from 1 to 10 do x := x * i; end_for3628800

use the statement:
‘*‘(i $ i = 1..10)3628800

Control Step Size and Count Up and Down. By default, the loop
increments the value of a counter by 1 in each step. You can change the step
size:
for i from 1 to 3 step 1/2 do print(i) end_for1

3/2

2

5/2

3

1-165

1 Getting Started

To count backwards decreasing the value of a counter with each step, instead
of to, use the keyword downto:
for i from 3 downto 1 do print(i) end_for3

2

1

Use Mathematical Structures in for Loops. MuPAD supports the use of
structures such as lists and matrices in for loops:
for i in [1, -4, a, b] do print(i^2) end_for1

16

a^2

b^2

s := 0: for i in linalg::hilbert(3) do s := s + i^2 end_for1199/600

1-166

Programming Basics

Use Loops with Conditions (while and repeat Loops)

Condition at the Beginning (while Loops). MuPAD supports the use of
loops with logical conditions. The while loop continues while the execution
conditions are valid. The loop starts with while and ends with end_while
or just end. MuPAD executes all the statements between these commands
repeatedly as long as the execution conditions are true. In the while loop,
MuPAD evaluates the conditions before each iteration. When the condition
becomes false, the loop terminates without executing the statements of the
current iteration:
i := 2; while i < 16 do i := i^2; print(i) end_while:2

4

16

Termination Condition at the End (repeat Loops). The repeat loop
continues until the termination condition becomes valid. The loop starts
with repeat and ends with end_repeat. MuPAD executes all the statements
between these commands repeatedly while the conditions are false. The
repeat loop tests a termination condition at the end of each iteration.
When the condition becomes true, the loop terminates after executing the
statements of the current iteration:
i := 2; repeat i := i^2; print(i) until i >= 16 end_repeat:2

4

16

1-167

1 Getting Started

Avoid Infinite Loops: Set a Counter. The while and repeat loops do not
operate for a fixed number of steps. If the execution or termination conditions
of such loops never become true, MuPAD can execute the statements within
these loops infinitely. For example, if the termination condition is not valid
during the first iteration, and it does not change inside the loop, the loop is
infinite:
i := 1; repeat print(i) until i > 3 end_repeat:To avoid this infinite loop, use the
additional statement to change it in each iteration:
i := 1; repeat i := i + 1; print(i) until i > 3 end_repeat:1

2

3

4

Use Multiple Conditions. You can use multiple conditions combining the
expressions by and, or, xor, or other logical operators:
i := 2: j := 3: repeat i := i*j; j := j^2; print(i, j) until i > 100 and j > 10
end_repeat:6, 9

54, 81

4374, 6561

i := 2: j := 3: repeat i := i*j; j := j^2; print(i, j) until i > 100 or j > 10
end_repeat:6, 9

1-168

Programming Basics

54, 81

Use Nested Loops
You can place one or several loops inside another loop. Internal loops can be
of the same or different types:
s := 0: for i from 1 to 3 do for j from 1 to 2 do s := s + i + j; end_for end_for:
print(s)21

s := 0: for i from 1 to 3 do j := 1: while j <= 2 do s := s + i + j; j := j + 1;
end_while end_for: print(s)21

Exit a Loop
To add a possibility to exit a loop, use the break command. Suppose you want
to exit a loop if some condition is true:
for i from 1 to 3 do for j from 1 to 2 do if i = j then print(Unquoted, "i = j =
".expr2text(i)); break end_if end_for end_for: i = j = 1 i = j = 2 The break
command lets you exit the loop in which you place this command. If you
create nested loops and use break inside an inner loop, MuPAD continues to
execute the statements in the outer loops:
for i from 1 to 3 do for j from 1 to 2 do if i = j then print(Unquoted, "break with
i = j = ".i); break end_if; print(Unquoted, "i = ".i.", j = ".j); end_for end_for:
break with i = j = 1 i = 2, j = 1 break with i = j = 2 i = 3, j = 1 i = 3, j = 2 Suppose
you want to stop executing the statements and exit the nested loops as soon
as the condition i = j is true. Use the additional variable for the break state
of the inner loop. Use this variable to exit the outer loop:
breakAll := FALSE: for i from 1 to 3 do for j from 1 to 2 do if i = j then
print(Unquoted, "break with i = j = ".i); breakAll := TRUE; break end_if;
print(Unquoted, "i = ".i.", j = ".j); end_for; if breakAll then break end_if;
end_for: break with i = j = 1

1-169

1 Getting Started

Skip Part of Iteration
To skip the commands from a particular point to the end of a loop and start
the next iteration, use the next command:
for i from 1 to 3 do for j from 1 to 2 do if i = j then print(Unquoted, "i =
j = ".expr2text(i)); next end_if; print(Unquoted, "i = ".expr2text(i), "j =
".expr2text(j)) end_for end_for: i = j = 1 i = 1, j = 2 i = 2, j = 1 i = j = 2 i = 3,
j = 1 i = 3, j = 2

Return Value of a Loop
All MuPAD commands produce some return values. Loops in MuPAD return
the result of the last executed statement:
for i from 1 to 3 do x := 2*i; y := 3*i end_for9

Suppress the output of the return value with a colon:
for i from 1 to 3 do x := 2*i; y := 3*i end_for:

Display Intermediate Results
By default, MuPAD does not display intermediate results obtained inside a
loop even if you use semicolons after commands. To see intermediate results,
use the print command inside a loop:
i := 1; while i < 3 do i := i + 1; print(i) end_while:1

2

3

To display results of each iteration in a for loop, also use the print command:
for i from 1 to 5 do x := i!; print(Unquoted, expr2text(i)."! = ".expr2text(x))
end_for 1! = 1 2! = 2 3! = 6 4! = 24 5! = 120

1-170

Programming Basics

Procedures

Create a Procedure
If you want to execute a piece of code repeatedly, create and use a procedure.
Define a procedure with the proc command. Enclose your code in the begin
and end_proc commands:
myProc:= proc(n) begin if n = 1 or n = 0 then 1 else n * myProc(n - 1) end_if;
end_proc:Use end as a shortcut for end_proc.

Call a Procedure
Now call the procedure:
myProc(5)120

delete myProc

Control Return Values
By default, a procedure returns the result of the last executed command. If
you want to return other results, use the return command. For example,
create a procedure that computes the factorials of integer numbers:
myProcReturn := proc(n) begin if n = 0 or n = 1 then return(1); end_if; n *
myProcReturn(n - 1); end_proc:Call the procedure:
myProcReturn(5)120

delete myProcReturnTo display the results on your screen without returning
them, use the print command:
myProcPrint:= proc(n) begin print(n); if n = 0 or n = 1 then return(1); end_if; n
* myProcPrint(n - 1); end_proc:Call the procedure:
myProcPrint(5);5

4

1-171

1 Getting Started

3

2

1

120

delete myProcPrint

Return Multiple Results
To return several results from a procedure, use such structures as lists or
matrices as return values:
myProcSort:= proc(a, b) begin if a < b then [a, b] else [b, a] end_if;
end_proc:myProcSort(4/5, 5/7)[5/7, 4/5]

delete myProcSort

Return Symbolic Calls
Many built-in MuPAD procedures can return symbolic calls to themselves
when they cannot compute results as exact values. For example, when you
compute sin(PI/2), the sin function returns the exact value 1. At the same
time, when you compute sin(x/2), the sin function returns the symbolic
call to itself:
reset()sin(x/2)sin(x/2)

1-172

Programming Basics

To enable your custom procedure to return symbolic calls, use the special
syntax procname(args()). For example, create the procedure that computes
a factorial of its argument:
f := proc(x) begin if testtype(x, Type::PosInt) then return(x!) else
return(procname(args())) end_if: end_proc:If its argument is a positive
integer, this procedure returns an exact number:
f(5), f(10)120, 3628800

Otherwise, it does not error, but returns a symbolic call to itself:
f(1/3), f(1.1), f(x), f(x + 1)f(1/3), f(1.1), f(x), f(x + 1)

Use Global and Local Variables
Inside a procedure, all variables fall into two categories: global and local.
Global variables are accessible from everywhere inside a notebook. Local
variables are accessible only from within a procedure.

Global Variables. Suppose you want to create a procedure gProc and use
the global variable gVar inside the procedure:
gProc := proc(x) begin gVar := gVar^2 + x^2 + 1 end_proc:When you call this
procedure, the value of the variable gVar changes:
gVar := 10; gProc(5): gVar10

126

Multiple calls change the value of the global variable further:
gProc(5): gVar15902

1-173

1 Getting Started

Note Note Avoid using unnecessary global variables.

Global variables reduce code readability, occupy the global namespace, and
often lead to errors. When you use global variables inside a procedure, always
verify that each call to the procedure changes global variables as intended.

Local Variables. You can access and modify local variables only inside a
procedure. Suppose, you use a variable lVar in your notebook:
lVar := 1010

To declare a local variable, use the local command inside a procedure:
lProc := proc(x) local lVar; begin lVar := 10; lVar := lVar^2 + x^2 + 1
end_proc:When you call this procedure, the value of the variable lVar changes
only inside a procedure. Outside the procedure, the variable does not change
its value:
lProc(5): lVar10

If you declare a local variable, it does not inherit the value of a global variable
with the same name. Local variables are not identifiers of type DOM_IDENT.
They belong to a special domain type DOM_VAR. Therefore, you cannot use a
local variable as a symbolic variable. Before performing computations with
a local variable, you must assign a value to that variable. For example,
without the assignment lVar:= 10, the procedure call lProc returns an error
message:
lProc := proc(x) local lVar; begin lVar := lVar^2 + x^2 + 1 end_proc:lProc(5)
Warning: Uninitialized variable ’lVar’ is used. Evaluating: lProc Error: The
operand is invalid. [_power] Evaluating: lProc Local variables cannot have
assumptions.

1-174

Programming Basics

Restore Values and Properties of Global Variables Modified
in Procedures
When you use global variables inside a procedure, you can save their original
values and properties, and recover them after the procedure. Suppose, you
want to use more decimal digits for calculations with floating-point numbers
inside a procedure. By default, the number of digits is 10:
DIGITS10

To save this default value, use the save command at the beginning of the
procedure:
myProcSave := proc(newDigits, x) save DIGITS; begin DIGITS := newDigits;
print(float(x)); end_proc:After you call the procedure myProcSave, MuPAD
restores the value of the global variable DIGITS:
myProcSave(20, PI); DIGITS3.1415926535897932385

10

The combination of save and delete lets you temporarily free the variable
for the use inside a procedure. For example, the procedure cannot use the
variable x because the variable has a value assigned to it:
x := 10: proc() begin solve(x^2 + x = 1, x) end_proc(); Error: Invalid variable to
solve for. [solve] Use the save command to save the original value 10. Then,
free the variable x using the delete command:
x := 10: proc() save x; begin delete x; solve(x^2 + x = 1, x) end_proc(){- sqrt(5)/2
- 1/2, sqrt(5)/2 - 1/2}

After the procedure call, MuPAD restores the original value of x:
x10

1-175

1 Getting Started

The save and delete combination is helpful when you want to use a symbolic
variable (without any value assigned to it) inside a procedure. You cannot
use local variables for that purpose because a local variable in MuPAD is
not an identifier. A local variable must have a value assigned to it. Also,
you cannot specify assumptions on local variables, and you cannot integrate
with respect to local variables.

Functions

Call Existing Functions
If you want to execute the same code repeatedly, create a procedure and use
it. As a shortcut for simple procedures, create and use functions. Compared
to procedures, functions require less complicated syntax. Like procedures,
functions let you use the same code for different arguments as many times
as you need. For example, you can always calculate sine and cosine of a
particular value:
sin(30.0), sin(-1.0), sin(0.5); cos(10.0), cos(-0.8), cos(3.0)-0.9880316241,
-0.8414709848, 0.4794255386

-0.8390715291, 0.6967067093, -0.9899924966

Create Functions
To define your own functions in MuPAD, use the arrow operator:
reset()f := x -> x^2x -> x^2

After defining a function, call it in the same way you call system functions:
f(1), f(x), f(sin(x))1, x^2, sin(x)^2

1-176

Programming Basics

The arrow operator also can create a multivariate function:
g := (x, y) -> x^2 + y^3(x, y) -> x^2 + y^3

Call the multivariate function with numeric or symbolic parameters:
g(5, 2); g(x, 2*x); g(a, b)33

8*x^3 + x^2

a^2 + b^3

Evaluate Expressions While Creating Functions
If you use an arrow operator to define a function, MuPAD does not evaluate
the right-side expression:
reset()f1 := x -> int(x^2, x)x -> int(x^2, x)

To evaluate the right-side expression when defining a function, use the double
arrow operator:
f2 := x --> int(x^2, x)x -> x^3/3

1-177

1 Getting Started

Use Functions with Parameters
Besides symbolic variables, functions can contain symbolic parameters. To
evaluate such a function for particular values of symbolic parameters, use
evalAt or the vertical bar | as a shortcut:
fa := x -> x^2 + a: fa(2); fa(2) | a = 10a + 4

14

Functions with symbolic parameters serve best for interactive use in a
notebook. In your regular code, avoid unnecessary creation of such functions.
When using a symbolic parameter, you use a global variable even though you
do not explicitly declare it. See Global Variables for information on global
variables and recommendations on their use.

Shortcut for Closing Statements
As a shortcut for a closing statement, use the end command. This command
closes:

• Conditional structures if ... then ... else (a shortcut for end_if)

• Case Selection Structures case ... of (a shortcut for end_case)

• Loops (a shortcut for end_for, end_repeat, and end_while)

• Procedures (a shortcut for end_proc)

For example, the following two loops are equivalent:
for i in [0, 1, 0, 0] do if i = 1 then print(Unquoted, "True") else print(Unquoted,
"False") end_if end_for False True False False for i in [0, 1, 0, 0] do if i = 1
then print(Unquoted, "True") else print(Unquoted, "False") end end False
True False False

1-178

Trace Errors with the MuPAD Debugger

Trace Errors with the MuPAD Debugger

In this section...

“Overview” on page 1-179

“Open the Debugger” on page 1-179

“Debug Step-by-Step” on page 1-181

“Set and Remove Breakpoints” on page 1-185

“Evaluate Variables and Expressions After a Particular Function Call” on
page 1-192

“Watch Intermediate Values of Variables and Expressions” on page 1-194

“View Names of Currently Running Procedures” on page 1-195

“Correct Errors” on page 1-196

Overview
Besides syntax errors such as misspelling a function name or omitting
parenthesis, run-time errors can appear when executing your code. For
example, you might modify the wrong variable or code a calculation
incorrectly. Runtime errors are usually apparent when your code produces
unexpected results. Debugging is the process of isolating and fixing these
run-time problems.

MuPAD provides a tool to help you with the debugging process. With the
Debugger, you can:

• Run your procedure step-by-step.

• Set rigid and conditional breakpoints.

• Evaluate variables and expressions after a particular function call.

• Watch the changing intermediate values of the variables.

• View the name of the currently running procedure.

Open the Debugger
To open the Debugger window from a notebook:

1-179

1 Getting Started

1 Select Notebook>Debug from the main menu.

1-180

Trace Errors with the MuPAD Debugger

2 In the Debug Procedure Call dialog box enter the procedure call you want
to debug.

3 Click OK to open the Debugger for this procedure call.

You also can open the Debugger directly from the command line using the
debug command, for example:
debug(factor(x^2-1))If you debug several lines of code, place the debug
command in a separate input region. This allows you to avoid reevaluating
the code every time you open the Debugger:
g := proc(x) begin x/(x+1) end_proc: f := proc(n) begin g(10)^n
end_proc:debug(f(5))

Debug Step-by-Step
Using the MuPAD Debugger, you can run a procedure step by step. Running
a procedure step by step helps you isolate the errors in your code. To start the
step-by-step debugging process, select Step from the main menu.

1-181

1 Getting Started

Also you can use the toolbar buttons.

1-182

Trace Errors with the MuPAD Debugger

Executing your code step by step you can:

• Use Step Over to execute the current line. If the code line contains a call
to another function, the Debugger passes to the next code line without
stepping into that function.

• Use Step Into to execute the current code line and, if the code line contains
a call to another function, the Debugger steps into that function.

• After stepping in, use Step Out to run the rest of the current function,
leave the called function, and pause.

For example, use Step Into to open and step through the inner procedure g.

1-183

1 Getting Started

1-184

Trace Errors with the MuPAD Debugger

Set and Remove Breakpoints

Set Standard Breakpoints
Set breakpoints to pause execution of your code so you can examine values
where you think the problem is. To set a breakpoint inside a procedure:

1 Select a line where you want to set a breakpoint.

2 Select Breakpoints>Toggle Breakpoint from the main menu or
right-click to use the context menu. Also you can click the Toggle
Breakpoint button on the toolbar.

1-185

1 Getting Started

Set Conditional Breakpoints
To set a conditional breakpoint:

1-186

Trace Errors with the MuPAD Debugger

1 Select a line where you want to set a breakpoint

2 Select Breakpoints>Set Breakpoint from the main menu.

1-187

1 Getting Started

3 In the Set Breakpoint dialog box, type the condition under which you want
the Debugger to stop on this line. In the dialog box, you also can change
the placement of a breakpoint defining the file and line where you want
to set the breakpoint.

Use Breakpoints
After you set the breakpoint, you can continue the debugging process. The
Debugger pauses at the breakpoints and executes the line with the breakpoint
after you click the Continue button.

1-188

Trace Errors with the MuPAD Debugger

After setting breakpoints, you also can leave the current debugging session
and start a new one. In the new session, the Debugger stops at all the
breakpoints you previously set.

1-189

1 Getting Started

You can see the list of all breakpoints in the debugging process using the
Breakpoints window. To open this window, select View>Breakpoints.

Remove Breakpoints
To remove a breakpoint:

1 Select the breakpoint you want to remove.

2 Select Breakpoints>Toggle Breakpoint from the main menu or
right-click to use the context menu. Also, you can click the Toggle
Breakpoint button on the toolbar. The second click releases the button
and removes the breakpoint.

If you want to remove all breakpoints, select Breakpoints>Remove All
Breakpoints from the main menu.

1-190

Trace Errors with the MuPAD Debugger

1-191

1 Getting Started

Evaluate Variables and Expressions After a Particular
Function Call
During the debugging process you can check the values of variables by
hovering the cursor over a particular variable. The Debugger displays the
current value of the variable.

To evaluate the value of an expression:

1 If you do not see the Output pane, select View>Output from the main
menu.

2 In the Output pane, type the expression you want to evaluate or select one
of the prior expressions from the drop-down menu.

3 Click the Evaluate button or press the Enter key.

1-192

Trace Errors with the MuPAD Debugger

Alternatively, you can select an expression and hover the cursor over it. If the
expression is syntactically correct and can be computed fast, MuPAD displays
the value of the expression in a tooltip.

1-193

1 Getting Started

Watch Intermediate Values of Variables and
Expressions
You can observe the values of variables during the debugging process in the
Watch pane. If you do not see the Watch pane, select View>Watch.

By default, the Debugger displays the values of the parameters used in the
function call (args), the results of the most recent command (%), and the
values of variables declared in the procedure. To watch the values of other
variables and expressions during the debugging process, selectWatches>Add
Watch and enter the object or the expression you want to observe in the
Add Watch dialog box.

You also can enter the expressions directly into theWatch table.

1-194

Trace Errors with the MuPAD Debugger

View Names of Currently Running Procedures
In the Call Stack pane, you can see the list of the procedures participating
in the debugging process. If you do not see the Call Stack pane, select
View>Call Stack.

The Debugger lists all the procedure calls in the Call Stack pane. The
Debugger marks the name of the current procedure with a blue triangle and
highlights the currently executed code line.

1-195

1 Getting Started

To switch between procedures, click the name of a procedure you want to
switch to. Also, you can select Step>Stack Up or Step>Stack Down from
the main menu or use the toolbar. As an alternative, you can press u and
d. The Call Stack pane helps you navigate within nested calls of various
procedures.

Correct Errors
The Debugger displays procedures and helps you find errors in the code, but
you cannot correct the errors in the Debugger window. To edit your code use
the MATLAB Editor, the Notebook Interface, or any text editor.

To open a new MATLAB Editor window, select File>New Editor with
Source from the main menu or select Open in Editor from the context
menu. The MATLAB Editor window contains the source that you see in the
Debugger and lets you modify and save it.

Changes made in the Editor window do not automatically appear in the
Debugger window. The Debugger presents the code that is already in the
kernel. To run the Debugger on the corrected file:

1 Close the Debugger window if it is open.

2 In the Editor window select File>Save from the main menu to save
changes.

3 Open a notebook.

1-196

Trace Errors with the MuPAD Debugger

4 Select Notebook>Read Commands from the main menu.

5 Select the file you want to run.

1-197

1 Getting Started

6 Start the Debugger from the notebook.

1-198

2

Notebook Interface

• “Notebook Overview” on page 2-3

• “Debugger Window Overview” on page 2-6

• “Arrange Toolbars and Panes” on page 2-9

• “Enter Data and View Results” on page 2-12

• “View Status Information” on page 2-14

• “Save Custom Arrangements” on page 2-15

• “Set Preferences for Notebooks” on page 2-16

• “Set Preferences for Dialogs, Toolbars, and Graphics” on page 2-21

• “Set Font Preferences” on page 2-25

• “Set Engine Preferences” on page 2-28

• “Get Version Information” on page 2-33

• “Use Different Output Modes” on page 2-34

• “Set Line Length in Plain Text Outputs” on page 2-39

• “Delete Outputs” on page 2-40

• “Greek Letters in Text Regions” on page 2-41

• “Special Characters in Outputs” on page 2-42

• “Non-Greek Characters in Text Regions” on page 2-43

• “Use Keyboard Shortcuts” on page 2-44

• “Use Mnemonics” on page 2-45

• “Overview” on page 2-46

• “Wrap Long Lines” on page 2-47

2 Notebook Interface

• “Hide Code Lines” on page 2-57

• “Change Font Size Quickly” on page 2-60

• “Scale Graphics” on page 2-65

• “Use Print Preview” on page 2-68

• “Change Page Settings for Printing” on page 2-72

• “Print Wide Notebooks” on page 2-73

2-2

Notebook Overview

Notebook Overview
The first time you start MuPAD notebook, it appears with the default layout,
as shown in the following illustration.

2-3

2 Notebook Interface

2-4

Notebook Overview

• E A new input region appears after evaluation of the bottom input region.

• F View current status information in the Status bar.

• G Find and Replace text in the input and text regions.

• H Quickly access standard functions from the Command Bar.

• I Format nongraphical objects in the input and output regions from the
Format toolbar.

• J Use more items from the toolbars.

• K Menus change in the Graphics Format mode.

2-5

2 Notebook Interface

Debugger Window Overview
The first time you start MuPAD Debugger window, it appears with the default
layout, as shown in the following illustration.

2-6

Debugger Window Overview

2-7

2 Notebook Interface

• A Perform common tasks from the toolbar.

• B View the code that you debug.

• C Type an expression and evaluate it in the Output pane anytime during
the debugging process.

• D Use the Status bar to view memory and time usage for the current or
most recent debugging step.

• E Use the Watch pane to view values of variables during the debugging
process.

• F Use the Call Stack pane to view the names of the procedures participating
in the debugging process.

For information about the Debugger mode, see Tracing Errors with the
Debugger.

2-8

Arrange Toolbars and Panes

Arrange Toolbars and Panes

In this section...

“Enabling and Disabling Toolbars and Panes” on page 2-9

“Move Toolbars and Panes” on page 2-10

Enabling and Disabling Toolbars and Panes
To enable or disable the Command Bar, Find and Replace Bar, toolbars, or
Status Bar, select View from the main menu. The following illustration
shows the View menu for a notebook and a Debugger window.

To use context menu, right-click any bar. The following illustration shows the
context menu for the Notebook and Debugger windows.

2-9

2 Notebook Interface

Move Toolbars and Panes
To move a toolbar, grab the toolbar anchor and drag the toolbar to a different
location. For example, line the toolbars one below the other.

To move the Command Bar or Find and Replace Bar, grab the pane title
and drag the pane to a different location. For example, move the Command
Bar to the left.

2-10

Arrange Toolbars and Panes

2-11

2 Notebook Interface

Enter Data and View Results
MuPAD notebook has two types of regions for entering data:

• Text regions serve for entering your comments. They can contain text,
tables, mathematical formulas, and graphics. Text regions do not have
not bracket markers. The default font color for text regions is black. To
start a new text region, click outside the gray brackets and start typing.
Alternatively, you can insert a new text region by selecting Insert>Text
Paragraph or Insert>Text Paragraph Above. You cannot insert a text
region inside a region of other type or between adjacent input and output
regions.

• Input regions serve for entering your code. They can contain MuPAD
mathematical expressions and commands in the MuPAD language.
Input regions have gray bracket markers. The default font color for
input regions is red. When you evaluate an expression in the bottom
input region, MuPAD inserts a new input region below. To insert new
input regions in other parts of a notebook, select Insert>Calculation
or Insert>Calculation Above from the main menu. Alternatively, use

the Insert Calculation button .

MuPAD notebook has a special type of region for viewing results:

• Output regions serve for viewing results. These regions automatically
appear when you evaluate input regions. The results can include graphics
and error messages. The default font color for output regions is blue. You
cannot edit data in the output regions. To change the results, edit the
associated input region and evaluate it by pressing Enter. Also, you can
copy results from the output regions to the text and input regions. When
you copy outputs to the input regions, MuPAD inserts ASCII equivalents
of the results in the input regions.

If you want to change the default text color, font, or the appearance of
brackets for the current notebook, see Changing Default Format Settings.

If you want to change preferences for all notebooks, see Setting Preferences
for Notebooks.

2-12

Enter Data and View Results

Note Note Most preferences affect only new notebooks. They do not affect
existing notebooks.

2-13

2 Notebook Interface

View Status Information
The status bar shows the current status information.

• A Displays memory and time usage for the current or most recent
computation.

• B Indicated the type of the currently active region.

• C Indicates insert or overwrite mode.

View the current engine state at the far left end of the status bar. If the engine
is not connected to your notebook, the status bar displays Not Connected.

The status bar indicates the type of the region where you position the cursor.
The indicator displays:

• Cmd, if the cursor is in an input region

• Text, if the cursor is in a text region

• Outp, if the cursor is in an output region

The status bar also indicates if the cursor is in a read-only part of a notebook,
for example, in an output region.

For text and input regions, MuPAD notebook supports overwrite mode. Press
the Insert key to enter text in overwrite mode. Press the Insert key again
to return to entering text in insert mode. View the current state at the far
right of the status bar.

2-14

Save Custom Arrangements

Save Custom Arrangements
You can change a notebook or a Debugger window arrangement to meet your
needs, including resizing, moving, and closing toolbars and panes. When
you end a session, MuPAD saves the arrangement. The next time you start
MuPAD and open a notebook or a Debugger window, it appears the same
way you left it.

2-15

2 Notebook Interface

Set Preferences for Notebooks

In this section...

“Preferences Available for Notebooks” on page 2-16

“Change Default Formatting” on page 2-18

“Use Scalable Formats for Copying Formulas and Graphics” on page 2-19

Preferences Available for Notebooks
To change preferences for displaying the contents of notebooks:

1 Select View > Configure

2 In the left pane of the Configure MuPAD dialog box, click Notebook.

2-16

Set Preferences for Notebooks

The right pane of the dialog box lets you change two types of settings: the
settings that affect the new notebooks only and the global settings that affect
all notebooks, including existing ones. For new notebooks, you can:

• Change the default formatting settings of all new notebooks. For details,
see Changing Default Formatting for Notebook Elements.

2-17

2 Notebook Interface

• Change the default mode for displaying results. For details on output
modes, see Using Different Output Modes.

• Change the default line length for displaying results in plain text format.

• On Windows platforms, copy formulas and graphics using scalable
Windows Metafile (WMF) format. For details, see Using Scalable Formats
for Copying Formulas and Graphics.

• Change key sequence for evaluation of input regions to Shift+Enter. The
default key is Enter.

• Specify how often MuPAD automatically saves a backup document.

For all notebooks including existing ones, you can highlight matched and
mismatched delimiters (parentheses, brackets, and braces) in input regions.
When you type a parenthesis, a bracket, or a brace, MuPAD highlights the
matched delimiter in the pair. If a delimiter is missing or if a pair includes
delimiters of different types (for example, a bracket and a brace), MuPAD
uses a different color to highlight the delimiters. In addition to highlighting
mismatched delimiters, MuPAD underlines them. To make the display
of highlighting and underlining disappear, move the cursor away from a
delimiter.

Change Default Formatting
To specify default formatting for the elements of all new MuPAD notebooks:

1 Select View>Configure.

2 In the left pane of the Configure MuPAD dialog box, click Notebook.

3 In the right pane of the dialog box, click Formats.

4 In the Default Formats dialog box, use tabs to select the required
element. You can specify default formatting for text regions, calculations,
tables, frames, and links.

2-18

Set Preferences for Notebooks

5 Specify default formatting for the element you selected. For example, set
the default font size, style, and color for the text regions.

Use Scalable Formats for Copying Formulas and
Graphics
By default, MuPAD copies graphics and formulas using the following formats:

• Windows Bitmap if you use Windows platforms

• PNG if you use any other platform

2-19

2 Notebook Interface

On Windows platforms, you can choose to copy graphics and formulas using
scalable Windows Metafile (WMF) format. To enable scalable WMF format
for copying formulas and graphics, use the following steps:

1 Select View>Configure.

2 In the left pane of the Configure MuPAD dialog box, click Notebook.

3 In the right pane of the dialog box, select the following options.

To use scalable formulas, install the MuPAD fonts on a system level. If you do
not install the MuPAD fonts and select the option for formulas, the following
warning appears. The warning provides the path to the directory where you
can find the MuPAD font installer (FontInstaller.exe).

If you prefer not to install the fonts, you can continue using nonscalable
bitmap formulas. Using scalable graphics does not require the MuPAD fonts.

2-20

Set Preferences for Dialogs, Toolbars, and Graphics

Set Preferences for Dialogs, Toolbars, and Graphics

In this section...

“Preferences Available for Dialogs, Toolbars, and Graphics” on page 2-21

“Preferences for Toolbars” on page 2-23

“Preferences for Graphics” on page 2-23

“Preferences for Dialog Boxes” on page 2-23

Preferences Available for Dialogs, Toolbars, and
Graphics
To specify the default settings for MuPAD toolbars, dialog boxes and graphics:

1 Select View > Configure.

2 In the left pane of the Configure MuPAD dialog box, click User Interface.

2-21

2 Notebook Interface

3 Use the right pane of the dialog box to specify the setting you want for the
toolbars, graphics, units of measurements used in dialog boxes, and other
options.

2-22

Set Preferences for Dialogs, Toolbars, and Graphics

Preferences for Toolbars
Specify the following preferences for the toolbars:

• Icon Size. Specify the size of icons in the toolbars.

• Show Labels. Select this option to display labels on the buttons of the
toolbars.

Preferences for Graphics
You can specify the following preferences for graphics:

• Resolution. Specify the dpi value for the resolution you want to use when
displaying graphical results.

• Enable OpenGL. Select this option to use OpenGL®.

• Accelerate OpenGL. Select this option to use accelerated OpenGL. Mac
OS platforms always use accelerated OpenGL.

Preferences for Dialog Boxes
You can specify the following preferences for dialogs:

• Units of measurement displayed. Specify the units of measurement
you want to use in the MuPAD dialog boxes. For example, you can use
millimeters.

Now all dialog boxes in MuPAD except those displaying the font sizes, use
millimeters as the units of measurement. For example, the Paragraph
Format dialog box shows the indentation and spacing sizes in millimeters.

2-23

2 Notebook Interface

• Hide Help buttons. Select this option if you do not want to see help

buttons in the dialog boxes.

• Hide Welcome dialog. Select this option if you do not want to see the
welcome dialog box on startup.

2-24

Set Font Preferences

Set Font Preferences

In this section...

“Select Generic Fonts” on page 2-25

“Default Generic Fonts for Microsoft Windows, Macintosh, and Linux” on
page 2-27

Select Generic Fonts
To specify the generic fonts for use in MuPAD notebooks:

1 Select View > Configure.

2 In the left pane of the Configure MuPAD dialog box, click Fonts.

2-25

2 Notebook Interface

3 Use the right pane of the dialog box to select the fonts you want to use
as generic fonts.

Use these specified generic fonts to format text, mathematical expressions, or
calculations in your notebooks.

2-26

Set Font Preferences

Default Generic Fonts for Microsoft Windows,
Macintosh, and Linux
The default generic fonts in MuPAD depend on the platform you use.

Font Windows Macintosh

Generic Serif Times New Roman Times

Generic Sans Serif Arial Lucida Grande

Generic Monospace Courier New Monaco

On Linux® platforms, the default generic fonts depend on the system default
fonts.

2-27

2 Notebook Interface

Set Engine Preferences

In this section...

“Change Global Settings” on page 2-28

“Restore Default Global Settings” on page 2-30

“Add Hidden Startup Commands to All Notebooks” on page 2-30

“Options Available for MuPAD Engine Startup” on page 2-30

Change Global Settings
Global settings in MuPAD serve for specifying a particular engine you want
to run, using additional libraries, startup commands and options. To specify
global settings:

1 Select View > Configure.

2 In the left pane of the Configure MuPAD dialog box, click Engine.

2-28

Set Engine Preferences

3 Use the right pane to specify the following settings:

• Engine. Path to the MuPAD engine you want to use

• Library Path. Path to the standard set of the MuPAD libraries you
want to use

2-29

2 Notebook Interface

• Package Path. Path to additional libraries (packages) you want to use

• User Init Path. Path to the folder containing initialization file
(userinit.mu). This file contains startup commands for MuPAD
notebooks. You can add your own commands to the initialization file.

• Arguments. Options you want to use when starting MuPAD engine.
See the list of Options Available When Starting Engine.

Restore Default Global Settings
To restore the default global settings:

1 Select View>Configure.

2 In the left pane of the Configure MuPAD dialog box, click Engine.

3 In the right pane, click Reset To Defaults button.

Add Hidden Startup Commands to All Notebooks
You can run MuPAD commands every time you start the engine without
displaying these commands in a notebook. If you want to use hidden
commands for a particular notebook, see Hiding Code Lines. To add startup
commands to all MuPAD notebooks:

1 Select View>Configure.

2 In the left pane of the Configure MuPAD dialog box, click Engine.

3 In the User Init Path field, specify the path to the initialization file
containing your commands.

Options Available for MuPAD Engine Startup
You can use the following options on the startup of the MuPAD engine.

2-30

Set Engine Preferences

-g Start the engine in debug mode.
The engine creates debug nodes
during the initial read of the MuPAD
library. Without this option MuPAD
creates the nodes during a debug
session (after the first debug call).
Then, it writes the information
about passes through the nodes to a
temporary file.

-v Start the engine in the debug mode.
MuPAD displays more detailed
debug information in the output
pane of the Debugger window.

-f Suppress reading the initialization
files. Use this option to test your
code without deleting the files or the
path specified in the User Init Path
field.

-F Suppress reading all the package
files from the path specified in the
Package Path field. Use this option
to test your code without deleting
the files or the path.

-L number Set the limit of precalculated prime
numbers. The engine calculates and
stores all prime numbers that are
less than the number at startup. The
default startup number is 1000000.
You can increase this number. The
maximum value for this option is
436273009.

-U string Specify options as strings. See
Pref::userOptions for details.

2-31

2 Notebook Interface

-t Start the engine in the test coverage
mode. See prog::tcov for details.

-T filename Start the engine in the test coverage
mode and export the test coverage
information to filename. See
prog::tcov for details.

2-32

Get Version Information

Get Version Information

Type of Information You Want To Get the Information

Version and Release Numbers From the product, select
Help > About MuPAD.
Alternatively, call version() or
Pref::kernel() for a version
number.

32-bit or 64-bit version From the product, select
Help > About MuPAD.
Alternatively, call
Pref::kernel(BitsInLong).

Build Number For the build number of the kernel,
call Pref::kernel(BuildNr).
For the build number of the MuPAD
library, call buildnumber.

2-33

2 Notebook Interface

Use Different Output Modes

In this section...

“Abbreviations” on page 2-34

“Typeset Math Mode” on page 2-35

“Pretty Print Mode” on page 2-36

“Mathematical Notations Used in Typeset Mode” on page 2-37

Abbreviations
MuPAD can display results of your calculations using different modes. By
default, expressions in outputs use typeset mode and abbreviations:
solve(x^3 + x^2 + 1 = 0, x, MaxDegree = 3){- 1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)
- 1/3, 1/(18*(29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)) + (29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)/2 - 1/3 - (sqrt(3)*(1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3))*I)/2,
1/(18*(29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)) + (29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)/2 - 1/3 + (sqrt(3)*(1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3))*I)/2}

To disable abbreviations, clear Notebook>Abbreviate Output:

2-34

Use Different Output Modes

solve(x^3 + x^2 + 1 = 0, x, MaxDegree = 3){- 1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)
- 1/3, 1/(18*(29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)) + (29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)/2 - 1/3 - (sqrt(3)*(1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3))*I)/2,
1/(18*(29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)) + (29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)/2 - 1/3 + (sqrt(3)*(1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3))*I)/2}

To enable abbreviations, select Notebook>Abbreviate Output.

Typeset Math Mode
MuPAD can display results of your calculations using different formats. By
default, expressions in outputs use typeset mode and abbreviations:
solve(x^3 + x^2 + 1 = 0, x, MaxDegree = 3){- 1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)
- 1/3, 1/(18*(29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)) + (29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)/2 - 1/3 - (sqrt(3)*(1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3))*I)/2,
1/(18*(29/54 - (sqrt(31)*sqrt(108))/108)^(1/3)) + (29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)/2 - 1/3 + (sqrt(3)*(1/(9*(29/54 -
(sqrt(31)*sqrt(108))/108)^(1/3)) - (29/54 - (sqrt(31)*sqrt(108))/108)^(1/3))*I)/2}

2-35

2 Notebook Interface

To disable the typeset mode, clear Notebook>Typeset Math:
solve(x^3 + x^2 + 1 = 0, x, MaxDegree = 3) { { { / 1/2 1/2 \1/3 { 1 | 31 108 | {
- ----------------------------- - | 29/54 - ------------ | - 1/3, { / 1/2 1/2 \1/3 \ 108 / { |
31 108 | { 9 | 29/54 - ------------ | { \ 108 / / 1/2 1/2 \1/3 | 31 108 | | 29/54 -
------------ | 1 \ 108 / ------------------------------ + --------------------------- - 1/3 - / 1/2
1/2 \1/3 2 | 31 108 | 18 | 29/54 - ------------ | \ 108 / / / 1/2 1/2 \1/3 \ 1/2
| 1 | 31 108 | | 1 3 | ----------------------------- - | 29/54 - ------------ | | 1/2 I,
------------------------------ + | / 1/2 1/2 \1/3 \ 108 / | / 1/2 1/2 \1/3 | | 31 108 |
| | 31 108 | | 9 | 29/54 - ------------ | | 18 | 29/54 - ------------ | \ \ 108 / / \
108 / / 1/2 1/2 \1/3 } | 31 108 | } | 29/54 - ------------ | / / 1/2 1/2 \1/3 \ } \ 108
/ 1/2 | 1 | 31 108 | | } --------------------------- - 1/3 + 3 | -----------------------------
- | 29/54 - ------------ | | 1/2 I } 2 | / 1/2 1/2 \1/3 \ 108 / | } | | 31 108 | | }
| 9 | 29/54 - ------------ | | } \ \ 108 / / } To enable the typeset mode, select
Notebook>Typeset Math.

Pretty Print Mode
To see how the pretty print mode affects the output, disable the typeset mode
first. With the typeset mode disabled and the pretty print mode enabled,
the results look as follows:
PRETTYPRINT := TRUE:solve(x^3 + x^2 + 1 = 0, x, MaxDegree = 3) { { { /
1/2 1/2 \1/3 { 1 | 31 108 | { - ----------------------------- - | 29/54 - ------------ | -
1/3, { / 1/2 1/2 \1/3 \ 108 / { | 31 108 | { 9 | 29/54 - ------------ | { \ 108 / / 1/2
1/2 \1/3 | 31 108 | | 29/54 - ------------ | 1 \ 108 / ------------------------------ +
--------------------------- - 1/3 - / 1/2 1/2 \1/3 2 | 31 108 | 18 | 29/54 - ------------ |
\ 108 / / / 1/2 1/2 \1/3 \ 1/2 | 1 | 31 108 | | 1 3 | ----------------------------- - |

2-36

Use Different Output Modes

29/54 - ------------ | | 1/2 I, ------------------------------ + | / 1/2 1/2 \1/3 \ 108 / | /
1/2 1/2 \1/3 | | 31 108 | | | 31 108 | | 9 | 29/54 - ------------ | | 18 | 29/54 -
------------ | \ \ 108 / / \ 108 / / 1/2 1/2 \1/3 } | 31 108 | } | 29/54 - ------------ | / /
1/2 1/2 \1/3 \ } \ 108 / 1/2 | 1 | 31 108 | | } --------------------------- - 1/3 + 3 |
----------------------------- - | 29/54 - ------------ | | 1/2 I } 2 | / 1/2 1/2 \1/3 \ 108
/ | } | | 31 108 | | } | 9 | 29/54 - ------------ | | } \ \ 108 / / } To disable the
pretty print mode, clear Notebook>Pretty Print:
PRETTYPRINT := FALSE:solve(x^3 + x^2 + 1 = 0, x,
MaxDegree = 3) {- (1/9)/(29/54 - (1/108)*31^(1/2)*108^(1/2))^(1/3)
- (29/54 - (1/108)*31^(1/2)*108^(1/2))^(1/3) - 1/3,
(1/18)/(29/54 -\ (1/108)*31^(1/2)*108^(1/2))^(1/3) +
(1/2)*(29/54 - (1/108)*31^(1/2)*108^(1/2))^(1/3) - 1/3 -
3^(1/2)*((1/9)/(29/54 - (\ 1/108)*31^(1/2)*108^(1/2))^(1/3) - (29/54 -
(1/108)*31^(1/2)*108^(1/2))^(1/3))*1/2*I, (1/18)/(29/54 - (1/108)*31^(1/2)*\
108^(1/2))^(1/3) + (1/2)*(29/54 - (1/108)*31^(1/2)*108^(1/2))^(1/3) - 1/3
+ 3^(1/2)*((1/9)/(29/54 - (1/108)*31^(1/2)*10\ 8^(1/2))^(1/3) - (29/54 -
(1/108)*31^(1/2)*108^(1/2))^(1/3))*1/2*I} PRETTYPRINT := TRUE:When
you copy some part of an output region to an input region, plain text outputs
serve best. To obtain plain text outputs, disable both Typeset and Pretty
Print modes. When you copy an entire output region to an input region,
typeset mode serves best.

To enable the pretty print mode, select Notebook>Pretty Print.

Mathematical Notations Used in Typeset Mode
By default, MuPAD displays the output expressions using the Typeset Math
mode. In this mode, MuPAD uses standard mathematical notations for
special functions. For example:
Result:= int(sin(x^2), x)(sqrt(2)*sqrt(PI)*fresnelS((sqrt(2)*x)/sqrt(PI)))/2

If you are not familiar with a notation, you can see the corresponding MuPAD
command using one of following methods:

• Disable typesetting mode by selecting Notebook>Typeset Math.
Reevaluate the expression containing the unknown notation.

2-37

2 Notebook Interface

• Copy the output expression and paste it to an input region.

• Use the print command with the option Plain to display the results in
plain text mode. For example:
print(Plain, Result) / 1/2 \ 1/2 1/2 | 2 x | 2 PI fresnelS| ------ | | 1/2 | \
PI / ----------------------------- 2

Knowing the MuPAD command, you can access the corresponding help page
and get more information about the special function.

2-38

Set Line Length in Plain Text Outputs

Set Line Length in Plain Text Outputs
To see results in the plain text format, disable the typeset mode for outputs.
By default, MuPAD limits lines in plain text outputs to 80 symbols. To change
this setting for your current notebook:

1 Select Notebook>Text Width

2 In the Text Width dialog box, specify the line length limit.

MuPAD applies the new setting to all new outputs in a notebook. To apply the
setting to existing output regions, re-evaluate the appropriate input regions.

To change the default line length limit for the current and all new notebooks,
see Setting Preferences for Notebooks.

2-39

2 Notebook Interface

Delete Outputs
To clear a particular output region in your notebook:

1 Click the output region you want to delete or click the adjacent input region.

2 Select Edit>Delete Output

To clear all the outputs in your current notebook, select Edit>Delete All
Outputs.

2-40

Greek Letters in Text Regions

Greek Letters in Text Regions
You can convert characters in the text region to Greek letters one at a time:

1 Select the character you want to convert or place the cursor to the right
of the character.

2 Select Edit>Toggle Greek.

To get the original font style use the same steps.

2-41

2 Notebook Interface

Special Characters in Outputs
To produce special characters including greek letters in the output regions,
use the Symbol command:
Symbol::Omega; Symbol::subScript(Symbol::omega, 0) + Symbol::omega*t;
Symbol::subScript(M, Symbol::bigodot); Symbol::alpha; Symbol::LeftArrow;
Symbol::ForAll‘Ω‘

‘{ω}_{0}‘ + ‘ω‘*t

‘{M}_{⨀}‘

‘α‘

‘←‘

‘∀‘

2-42

Non-Greek Characters in Text Regions

Non-Greek Characters in Text Regions
You can insert greek letters into text regions. To use other special characters
in text regions:

1 Produce special characters in an output region.

2 Copy the characters from the output region and paste them into a text
region.

2-43

2 Notebook Interface

Use Keyboard Shortcuts
Using shortcut keys for your platform, you can access many of the desktop
menu items. These shortcut keys are sometimes called accelerators or hot
keys. For example, use the Ctrl+X shortcut to perform a cut on Microsoft®

Windows platforms. Many of the menu items show the shortcuts. Additional
standard shortcuts for your platform usually work, but only one is listed
with each menu item.

Instructions in the documentation specify shortcuts using the key convention
for Windows platforms, Ctrl+. With key bindings for Apple Macintosh
platforms selected, use the Command key instead of the Ctrl key. On
the Macintosh platform, to make full use of all keyboard shortcuts, you
might need to enable full keyboard access. To access this option, select
Apple menu>System Preferences, and click Keyboard & Mouse. Click
Keyboard Shortcuts, and select Turn full keyboard access on or off.

In addition to common shortcuts, MuPAD provides special shortcuts to
navigate within matched delimiters (parenthesis, brackets, braces).

On Microsoft Windows and Linux platforms:

• The Ctrl+Alt+Shift+RIGHT (the right arrow key) shortcut moves the
cursor to the closing (right) delimiter.

• The Ctrl+Alt+Shift+LEFT (the left arrow key) shortcut moves the cursor
to the opening (left) delimiter.

On Apple Macintosh platforms:

• The Ctrl+Alt+RIGHT (the right arrow key) shortcut moves the cursor to
the closing (right) delimiter.

• The Ctrl+Alt+LEFT (the left arrow key) shortcut moves the cursor to
the opening (left) delimiter.

For the pair of mismatched delimiters, you can correct the closing delimiter.
To replace the closing delimiter with the one that matches the opening
delimiter, place the cursor to the right of the closing delimiter and press the
Tab key.

2-44

Use Mnemonics

Use Mnemonics
Using mnemonics, you can access menu items and buttons. Mnemonics are
underlined on the menu item or button. For example, on the File menu, the F
in File is underlined, which indicates that Alt+F opens the menu.

The Macintosh platform does not support mnemonics.

Some versions of Windows operating system do not automatically show the
mnemonics on the menu. For example, you might need to hold down the Alt
key while the tool is selected to see the mnemonics on the menus and buttons.
Use the Windows Control Panel to set preferences for underlining keyboard
shortcuts. See the Windows documentation for details.

2-45

2 Notebook Interface

Overview
MuPAD provides functionality for creating electronic or printed documents,
class notes, textbooks, and interactive presentations. Notebooks support the
following options to help you design appealing and flexible documents:

• Separate formatting styles for commands in the input regions, text and
mathematical formulas in the text regions

• Default formatting styles

• Different modes for displaying the results of your calculations

• Embedded graphics

• Links, tables, and frames

• Invisible startup commands

• Quick modifications of the font and graphics sizes during the presentation

• Export of your notebooks to PDF and HTML formats

• Export of your graphic results separately from notebooks

2-46

Wrap Long Lines

Wrap Long Lines

In this section...

“Wrap Text” on page 2-47

“Wrap Expressions in Input Regions” on page 2-51

“Wrap Output Expressions” on page 2-54

Wrap Text
To wrap text to a notebook window size, select View > Wrap To Window.
If you use text wrapping and resize your notebook, MuPAD automatically
adjusts text lines to a new window size. This option affects text regions only.

2-47

2 Notebook Interface

2-48

Wrap Long Lines

When you wrap text in a notebook, and then unwrap it, the vertical line
appears. This line shows you the position of the right margin of the current
page format.

2-49

2 Notebook Interface

2-50

Wrap Long Lines

When you print the page, MuPAD lets you choose between scaling down the
whole page or cropping the content to the right of the line. The line does
not appear on printed pages. To remove this line, select View > Wrap To
Window.

Wrap Expressions in Input Regions
To wrap the contents of the input regions to a notebook window size:

1 Select Format > Defaults.

2 In the resulting dialog box, click the Calculations tab.

3 From the drop-down menu Format, select Input Paragraph.

4 Select the Word wrap check box.

2-51

2 Notebook Interface

Now MuPAD wraps all new expressions and commands in the input regions to
a notebook window size. If you use wrapping for input regions and then resize
your notebook, MuPAD automatically adjusts expressions and commands
to a new window size.

2-52

Wrap Long Lines

2-53

2 Notebook Interface

Wrap Output Expressions
By default, MuPAD wraps results displayed in the output regions to a
notebook window size. The system also wraps long lines in outputs when
printing them. When wrapping breaks a number, an identifier, or a strings,
MuPAD inserts the line break symbol \. For example, the following result
cannot be wrapped to the default notebook window size without inserting a
line break inside the number:

The line break symbol does not affect the result of computation. If you copy the
result to an input region, the line break symbol does not appear in the copy.

When you resize a notebook, MuPAD automatically adjusts output lines to
a new window size. If a new window is large enough to accommodate the
output in one line, the line break symbols disappear. They also disappear
when you disable wrapping and reevaluate the corresponding input region.
To disable wrapping:

1 Select Format > Defaults.

2 In the resulting dialog box, click the Calculations tab.

3 From the drop-down menu Format, select Output Math.

4 Select the Wrap lines check box.

2-54

Wrap Long Lines

If you disable wrapping, MuPAD does not insert lines breaks in the new
output expressions. If you want to remove line breaks in the existing output
expressions, reevaluate these expressions.

2-55

2 Notebook Interface

2-56

Hide Code Lines

Hide Code Lines
You can run MuPAD commands without displaying them in a notebook.
MuPAD evaluates these commands every time you start a notebook engine.
To specify the commands you want to execute invisibly:

1 Select File>Properties.

2 In the Start Up Commands field of the Notebook Properties dialog box,
specify the commands you want to run without displaying in the notebook.
Alternatively, attach an existing file containing the commands.

• A MuPAD uses this title only when exporting a notebook to HTML.

2-57

2 Notebook Interface

• B Attach an existing file with the MuPAD script that you want to
execute invisibly at the notebook startup.

• C Type the commands that you want to execute invisibly at the notebook
startup.

3 Save the notebook. MuPAD saves the hidden code with the notebook. This
code does not affect other notebooks. If you want to use hidden code for all
notebooks, see Adding Hidden Startup Commands to All Notebooks.

To execute the commands you entered, restart the notebook engine. To restart
an engine you can use one of the following methods:

• Select Notebook>Disconnect, and then Notebook>Start Engine.

• Close the notebook and reopen it.

After you restart an engine, you can access all the objects defined in the
Notebook Properties dialog box from your notebook.

2-58

Hide Code Lines

2-59

2 Notebook Interface

Change Font Size Quickly
To quickly resize all the characters in your notebook including the characters
in the output regions:

• Select the part of a notebook you want to resize. If you want to resize fonts
in a whole notebook, select Edit>Select All.

• Select Format>Increase size or Decrease size.

2-60

Change Font Size Quickly

2-61

2 Notebook Interface

Note Note Graphics size does not change.

To change graphics size, see Scaling Graphics.

2-62

Change Font Size Quickly

2-63

2 Notebook Interface

To undo font size changes, select Edit>Undo or use the toolbar button .

Note Note Using the opposite option (such as increasing the fonts you have
decreased before) does not guarantee to restore the original font size.

2-64

Scale Graphics

Scale Graphics
To resize your graphics, right-click the graphics and select Graphics Size.

2-65

2 Notebook Interface

2-66

Scale Graphics

In the Graphics Size dialog box, set the height and width of the graphics. The
option Keep Aspect Ratio lets you conserve the height to width ratio.

2-67

2 Notebook Interface

Use Print Preview

In this section...

“View Documents Before Printing” on page 2-68

“Print Documents from Print Preview” on page 2-68

“Save Documents to PDF Format” on page 2-69

“Get More Out of Print Preview” on page 2-70

View Documents Before Printing
Before printing a notebook that displays long lines in the input or output
regions or wide graphics that might not fit the page, use the Print Preview
window to see how the document will look when printed. The dialog box lets
you view and fix page layout problems, print your document, or save it to PDF
format. Previewing documents before you print them helps to avoid printing
unnecessary pages and thereby reduces paper waste.

To see how the document looks when printed, select File > Print Preview.
Alternatively, press Alt+F+V to open Print Preview.

Print Preview uses the properties of your current printer. If you print the
document using any other printer or save it to PDF format, the result can
differ from what you see in the Print Preview window.

To close Print Preview, click the Close button on the Print Preview toolbar.

Print Documents from Print Preview
Suppose, you like the way your document appears in the Print Preview
window and want to print the document. To print a document directly from
Print Preview, click the Print button on the Print Preview toolbar.

2-68

Use Print Preview

When you print directly from Print Preview, you can select and print specific
pages. To print a particular page:

1 Open Print Preview.

2 Click the Print button in the Print Preview toolbar.

3 In the resulting dialog box, click the Pages option under Page Range.

4 Type the number of the page you want to print. To specify a range of
pages, use a hyphen. For example, to print the second, third, and fourth
pages, type 2-4.

If your document is wide and does not fit the page, use the Print Preview
toolbar to adjust the document before printing. When you print a wide
document from the Print Preview window, MuPAD does not prompt you to
scale your document down. MuPAD prints documents exactly as you see
them in the Print Preview window.

Save Documents to PDF Format
If you like how your document appears in the Print Preview window, you can
save it to PDF format without leaving Print Preview. To save a document as
a PDF from the Print Preview window, click the Save as PDF button on the
Print Preview toolbar.

2-69

2 Notebook Interface

PDF files created with the Save as PDF button are not editable. To create
editable PDF files, click the Print button and try using a PDF printer
available for your system.

Note Note If a MuPAD document has links, these links are replaced by
regular text in the resulting PDF file.

Get More Out of Print Preview
Using the Print Preview toolbar, you can view one or more pages, zoom in
and out, and switch between page orientations. If Print Preview shows that
your document has layout problems visible when printed, you can fix these
problems without leaving the Print Preview window. To see what a particular
button lets you do, hover the pointer over the button and wait for a tooltip to
appear.

• A Indicates the current page number. Use this field to jump to a particular
page. Click the appropriate arrow to display the previous or the next page.

• B Lets you zoom in and out on a page.

• C Displays the current zoom factor. Use this field to zoom in or out by a
fixed percentage. The drop-down menu lets you quickly select one of the
commonly used zoom factors.

• D Fits the page to the Print Preview window. The button adjusts the
document so the width of the page matches the width of the Print Preview

window. The button adjusts the document so that an entire page fits in
the Print Preview window. If you display two pages side-by-side, the Fit
buttons adjust the document so that both pages fit in the window.

• E Scales the document so that all objects including graphics and calculation
regions fit in the page width.

• F Selects page orientation. Lets you choose portrait or landscape layout.

2-70

Use Print Preview

• G Opens the Page Format dialog box for adjusting page settings. When you
modify settings in the Format dialog box, MuPAD applies the new settings
not only to a preview, but also to the notebook itself. If later you close the
Print Preview window and save the notebook, MuPAD saves the new page
settings with the notebook. See Changing Page Settings for Printing for
details.

• H Lets you view multiple pages in the Print Preview window.

The option Show facing pages displays even pages on the left and odd
pages on the right. If you select this option to display a document with
multiple pages, the first page appears in the top-right corner.

2-71

2 Notebook Interface

Change Page Settings for Printing
If you do not specify page format, MuPAD uses the page settings of your
default printer. If you do not install a printer, the default page size is A4.
Note that A4 is narrower and longer than the Letter paper size.

A4 8.3 X 11.7 in 210 X 297 mm

Letter 8.5 X 11 in 216 X 279 mm

To change the page format for your notebook:

1 Select Format>Page

2 In the Page Format dialog box, specify paper size, margin size,
orientation, and background color for your pages.

MuPAD saves your page settings with a notebook. These settings do not
affect other existing or new notebooks.

2-72

Print Wide Notebooks

Print Wide Notebooks
Before printing a notebook that displays wide graphics or long lines in the
input or output regions, use Print Preview to see how the content fits the
page. Print Preview makes it easier to view and adjust wide documents.
Alternatively, wrap and then unwrap text in a notebook by using the option
View > Wrap To Window. When you wrap text in a notebook, and then
unwrap it, the vertical line appears. This line shows you the position of the
right margin of the current page format.

When you print a notebook that does not fit the page format, MuPAD prompts
you to select one of the following options:

• Print only the part of the notebook to the left of the margin.

• Scale the whole notebook to the size that fits the page format.

Also, you can change the page format.

When you print a wide document from the Print Preview window, the above
dialog box does not appear. Use the Print Preview toolbar to adjust the
document before printing. MuPAD prints documents exactly as you see them
in the Print Preview window.

2-73

2 Notebook Interface

2-74

3

Mathematics

• “Evaluations in Symbolic Computations” on page 3-5

• “Level of Evaluation” on page 3-8

• “Enforce Evaluation” on page 3-14

• “Prevent Evaluation” on page 3-17

• “Actual and Displayed Results of Evaluations” on page 3-19

• “Perform Evaluation at a Point” on page 3-21

• “Choose a Solver” on page 3-23

• “Solve Algebraic Equations and Inequalities” on page 3-28

• “Solve Algebraic Systems” on page 3-34

• “Solve Ordinary Differential Equations and Systems” on page 3-45

• “Test Results” on page 3-55

• “If Results Look Too Complicated” on page 3-61

• “If Results Differ from Expected” on page 3-66

• “Solve Equations Numerically” on page 3-73

• “Use General Simplification Functions” on page 3-90

• “Choose Simplification Functions” on page 3-94

• “If You Want to Simplify Results Further” on page 3-105

• “Convert Expressions Involving Special Functions” on page 3-110

• “When to Use Assumptions” on page 3-116

• “Use Permanent Assumptions” on page 3-118

• “Use Temporary Assumptions” on page 3-124

3 Mathematics

• “Choose Differentiation Function” on page 3-129

• “Differentiate Expressions” on page 3-130

• “Differentiate Functions” on page 3-132

• “Compute Indefinite Integrals” on page 3-135

• “Compute Definite Integrals” on page 3-138

• “Compute Multiple Integrals” on page 3-140

• “Apply Standard Integration Methods Directly” on page 3-142

• “Get Simpler Results” on page 3-145

• “If an Integral Is Undefined” on page 3-146

• “If MuPAD Cannot Compute an Integral” on page 3-147

• “Compute Symbolic Sums” on page 3-150

• “Approximate Sums Numerically” on page 3-153

• “Compute Taylor Series for Univariate Expressions” on page 3-155

• “Compute Taylor Series for Multivariate Expressions” on page 3-159

• “Control Number of Terms in Series Expansions” on page 3-160

• “O-term (The Landau Symbol)” on page 3-163

• “Compute Generalized Series” on page 3-164

• “Compute Bidirectional Limits” on page 3-166

• “Compute Right and Left Limits” on page 3-168

• “If Limits Do Not Exist” on page 3-171

• “Create Matrices” on page 3-173

• “Create Vectors” on page 3-175

• “Create Special Matrices” on page 3-176

• “Access and Modify Matrix Elements” on page 3-178

• “Create Matrices over Particular Rings” on page 3-180

• “Use Sparse and Dense Matrices” on page 3-182

• “Compute with Matrices” on page 3-183

3-2

• “Compute Determinants and Traces of Square Matrices” on page 3-188

• “Invert Matrices” on page 3-189

• “Transpose Matrices” on page 3-190

• “Swap and Delete Rows and Columns” on page 3-191

• “Compute Dimensions of a Matrix” on page 3-193

• “Compute Reduced Row Echelon Form” on page 3-194

• “Compute Rank of a Matrix” on page 3-195

• “Compute Bases for Null Spaces of Matrices” on page 3-196

• “Find Eigenvalues and Eigenvectors” on page 3-197

• “Find Jordan Canonical Form of a Matrix” on page 3-200

• “Compute Matrix Exponentials” on page 3-203

• “Compute Cholesky Factorization” on page 3-204

• “Compute LU Factorization” on page 3-206

• “Compute QR Factorization” on page 3-208

• “Compute Determinant Numerically” on page 3-210

• “Compute Eigenvalues and Eigenvectors Numerically” on page 3-214

• “Compute Factorizations Numerically” on page 3-221

• “Mathematical Constants Available in MuPAD” on page 3-232

• “Special Functions Available in MuPAD” on page 3-236

• “Floating-Point Arguments and Function Sensitivity” on page 3-240

• “Integral Transforms” on page 3-249

• “Z-Transforms” on page 3-257

• “Discrete Fourier Transforms” on page 3-260

• “Use Custom Patterns for Transforms” on page 3-265

• “Supported Distributions” on page 3-268

• “Import Data” on page 3-270

• “Store Statistical Data” on page 3-273

3-3

3 Mathematics

• “Compute Measures of Central Tendency” on page 3-274

• “Compute Measures of Dispersion” on page 3-278

• “Compute Measures of Shape” on page 3-280

• “Compute Covariance and Correlation” on page 3-283

• “Handle Outliers” on page 3-285

• “Bin Data” on page 3-286

• “Create Scatter and List Plots” on page 3-288

• “Create Bar Charts, Histograms, and Pie Charts” on page 3-292

• “Create Box Plots” on page 3-300

• “Create Quantile-Quantile Plots” on page 3-302

• “Univariate Linear Regression” on page 3-305

• “Univariate Nonlinear Regression” on page 3-309

• “Multivariate Regression” on page 3-312

• “Principles of Hypothesis Testing” on page 3-315

• “Perform chi-square Test” on page 3-316

• “Perform Kolmogorov-Smirnov Test” on page 3-318

• “Perform Shapiro-Wilk Test” on page 3-319

• “Perform t-Test” on page 3-320

• “Divisors” on page 3-321

• “Primes and Factorizations” on page 3-324

• “Modular Arithmetic” on page 3-329

• “Congruences” on page 3-334

• “Sequences of Numbers” on page 3-341

3-4

Evaluations in Symbolic Computations

Evaluations in Symbolic Computations
Evaluation is one of the most common mathematical operations. Therefore, it
is important to understand how and when MuPAD performs evaluations. For
example, assign the value 2 + 2 to the variable y. Instead of assigning the
expression 2 + 2, MuPAD evaluates this expression, and assigns the result of
the evaluation, the value 4, to the variable y:
y := 2 + 2: y4

The variable y is an identifier, and the number 4 is the value of that identifier.
Values of identifiers are not always numbers. For example, a value of an
identifier can also contain identifiers. In the following assignment, y is an
identifier, and the expression a + x is the value of that identifier:
y := a + xa + x

The value of y is a sum of two identifiers, a and x. You can assign a value to
any of these identifiers. For example, assign the value 10 to the identifier
a. Now, MuPAD recognizes that a is equal to 10. Therefore, the system
evaluates the value a + x of the identifier y to the expression x + 10:
a := 10: yx + 10

Note Note The value of an identifier is the value computed at the time of
assignment.

The value of the identifier y is still x + a. If you assign any other value to a,
MuPAD evaluates y using this new value:
a := 15: yx + 15

3-5

3 Mathematics

Now, assign the value 10 to the identifier a, and then assign the expression
x + a to y. As in the previous example, MuPAD evaluates the identifier y
and returns the expression x + 10:
a := 10: y := a + x: yx + 10

Although the evaluation returns the same result as in the previous example,
the value of y is different. Here the value of y is the expression x + 10. This
value does not depend of the identifier a:
a := 15: yx + 10

For further computations, clear the identifiers a, x, and y:
delete a, x, yThe value of an identifier can be any MuPAD object. For example,
the value of an identifier can be a list:
list := [x^k $ k = 1..10][x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^10]

If later you assign the value to x, the evaluation of the identifier list changes
accordingly:
x := 1/2: list[1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024]

MuPAD applies the same evaluation mechanism to function names. For
example, assign the function call f() to the identifier y:
y := f(PI)f(PI)

3-6

Evaluations in Symbolic Computations

Now, assign the function sin to f. If you evaluate the identifier y, the system
replaces the identifier f by its value sin. Then, the system evaluates the
call sin() and returns 0:
f := sin: y0

If you change or delete the value of f, the evaluation of f() changes
accordingly:
f := cos: y-1

delete f: yf(PI)

3-7

3 Mathematics

Level of Evaluation

In this section...

“What Is an Evaluation Level?” on page 3-8

“Incomplete Evaluations” on page 3-9

“Control Evaluation Levels” on page 3-11

What Is an Evaluation Level?
The value of an identifier can contain arbitrary MuPAD objects, including
identifiers. If the value of an identifier contains another identifier, MuPAD
tries to find the value of that second identifier. If the value of that second
identifier also contains identifiers, MuPAD tries to find their values, and so
on. Typically, evaluation continues until the system replaces all identifiers
that have values by these values. The final result can contain identifiers
that do not have assigned values. This recursive evaluation process is called
a complete evaluation. Each evaluation step in this recursive process is an
evaluation level. For example, evaluate the value of the identifier y:
reset()y := a + x: a := 1: yx + 1

The resulting expression x + 1 is the complete evaluation of y. The level
function demonstrates each step of this recursive evaluation. The zero level of
evaluation returns the identifier y itself:
level(y, 0)y

The first level accesses the value of the identifier, and returns that value:
level(y, 1)a + x

3-8

Level of Evaluation

When you evaluate y up to the second level, the system recognizes that the
expression x + a contains identifiers, which can also have assigned values.
When searching for these values, the system finds that the identifier a has
the value 1, and the identifier x does not have an assigned value:
level(y, 2)x + 1

In this example, MuPAD completely evaluates the identifier y by using just
two evaluation steps. Evaluating y up to the third and higher levels returns
the same expression:
level(y, 3)x + 1

delete a, x, y

Incomplete Evaluations
MuPAD does not always evaluate identifiers completely. For some
expressions, a complete evaluation requires a huge number of steps. To avoid
very long or infinite evaluations, the system implements two environment
variables, LEVEL and MAXLEVEL. These variables limit evaluation levels.
If the current evaluation level exceeds the limitation set by one these
variables, MuPAD stops the evaluation process before the system can replace
all identifiers by their assigned values.

The environment variable LEVEL limits evaluation levels to a specified
value. It does not try to detect and prevent an infinite evaluation loop. For
interactive computations, the default value of the environment variable
LEVEL is:
LEVEL100

When the evaluation level reaches the value of LEVEL, MuPAD stops the
evaluation and returns the result of the last computed evaluation step:

3-9

3 Mathematics

LEVEL := 10: x := x + 1: xx + 10

delete LEVEL, xMuPAD does not specify one uniform value of LEVEL for
all computations. For most computations, the value is 100, but there are
exceptions to this rule:

• If the evaluation occurs in a procedure, MuPAD limits the evaluation level
to 1.

• If the evaluation occurs in a matrix, MuPAD limits the evaluation level to 1.

• MuPAD does not evaluate arrays, tables, and polynomials. (The evaluation
level for these objects is 0.)

• MuPAD does not evaluate a returned value of the last() function call or
its equivalent %. (The evaluation level is 0.)

• MuPAD does not evaluate returned values of some other system functions.
For example, the system does not evaluate the results returned by the subs
and text2expr functions. The help pages for such functions provide the
information about the evaluation levels of the returned values.

• If the evaluation occurs in a function call level(expression, n), MuPAD
disregards the environment value LEVEL. Instead, the system uses the
evaluation level n.

For example, although LEVEL = 100 by default, the function call
level(a + x, 1) evaluates the expression a + x to the first evaluations
level:
a := b: b := 2: level(a + x, 1)b + x

delete a, b, xFor more examples of incomplete evaluations and information
about enforcing such evaluations, see Enforcing Evaluation.

To detect and prevent infinite loops, MuPAD implements another
environment variable, MAXLEVEL. The default value of MAXLEVEL for all
computations is
MAXLEVEL100

3-10

Level of Evaluation

When evaluation level reaches the value of MAXLEVEL, MuPAD assumes
that the evaluation is infinite and issues an error:
MAXLEVEL := 2: a := b: b := c: c := d: a Error: Recursive definition. [See
?MAXLEVEL] delete MAXLEVEL, a, b, c, dIf the value of MAXLEVEL is
greater than the value of LEVEL, the global variable MAXLEVEL does
not affect that evaluation. Otherwise, the value of MAXLEVEL limits the
number of evaluation steps. For example, the default values of LEVEL
and MAXLEVEL are equal (both values are 100). If an evaluation reaches
the level 100, MuPAD uses the global variable MAXLEVEL and, therefore,
issues an error:
x := x + 1: x Error: Recursive definition. [See ?MAXLEVEL] delete x

Control Evaluation Levels
You can change the values of the environment variables LEVEL and
MAXLEVEL. For example, the following equations define the identifiers xk
recursively:
(x[k] := (k + 1)*x[k + 1]) $ k = 1..9: x[10] := 10:Using the level function,
evaluate the identifier x1 to the levels from 1 to 10. For this identifier, the
level 10 returns the complete evaluation:
for l from 0 to 10 do print(Unquoted, level = l, "x[1]" = level(x[1], l)) end_for
level = 0, x[1] = x[1] level = 1, x[1] = 2 x[2] level = 2, x[1] = 6 x[3] level = 3,
x[1] = 24 x[4] level = 4, x[1] = 120 x[5] level = 5, x[1] = 720 x[6] level = 6,
x[1] = 5040 x[7] level = 7, x[1] = 40320 x[8] level = 8, x[1] = 362880 x[9] level
= 9, x[1] = 3628800 x[10] level = 10, x[1] = 36288000 Since the default value
of the environment value LEVEL = 100 is greater than 10, in interactive
computations MuPAD returns the completely evaluated identifier x1:
x[1]36288000

Delete the identifiers xk:
delete xSet the value of the environment variable LEVEL to 2:
LEVEL := 2:Now, MuPAD evaluates the identifier x1 only up to the second
level:

3-11

3 Mathematics

(x[k] := (k + 1)*x[k + 1]) $ k = 1..9: x[10] := 10: x[1]6*x[3]

The new value of LEVEL affects all interactive evaluations, except for
evaluations in arrays, matrices, tables, and polynomials. For example, use
the following recursive definition for the identifiers a, b, and c. Evaluation of
the identifier a proceeds only to the second level:
a := b: b := c: c := 1: ac

For further computations, delete the identifiers:
delete x, a, b, c:The new value of LEVEL does not affect evaluations that
happen in procedures. The evaluation level in procedures remains equal to
1. For example, create the procedure myProc that defines the values of the
identifiers a, b, and c recursively:
myProc:= proc(d) begin a := b: b := c: c := d: a end_proc:The procedure
evaluates the identifier a up to the first evaluation level:
myProc(10)b

delete a, b, c, d:You can change the evaluation level inside a particular
procedure. This change does not affect evaluations occuring in other
procedures or inside interactive computations:
myProc:= proc(d) begin LEVEL := 3: a := b: b := c: c := d: a end_proc:
myProc(10)10

For further computations, delete the identifiers and restore the value of
LEVEL to its default:
delete a, b, c, d: delete LEVEL:Another environment variable, MAXLEVEL
enables the system to detect and interrupt infinite evaluation loops. The
default value of this variable is 100. This value is recommended for most

3-12

Level of Evaluation

computations. If your code has recursive evaluations that require more
than 99 steps, change the value of MAXLEVEL. For example, the following
definition of the identifier x1 requires 111 evaluation steps. MuPAD issues
an error because the system cannot evaluate x1 in 99 steps and assumes that
the evaluation loop is infinite:
(x[k] := (k + 1)*x[k + 1]) $ k = 1..110: x[111] := 1: x[1] Error: Recursive
definition. [See ?MAXLEVEL] delete xTo avoid the error, the value of
MAXLEVEL must exceed the number of required evaluation steps at least
by 1. Changing the value to 112 resolves the error. Now, MuPAD evaluates
the identifier x1 to the 100th evaluation level, which is the default value of
the environment variable LEVEL:
MAXLEVEL:= 112: (x[k] := (k + 1)*x[k + 1]) $ k = 1..110: x[111] := 1:
x[1]942594775983835942085162312448293674956231279470254376832788935341697759

delete xTo evaluate x1 to the 111th evaluation level, you must change both
LEVEL and MAXLEVEL variables. Also, you can use the level function
instead of changing the value of LEVEL:
MAXLEVEL:= 112: (x[k] := (k + 1)*x[k + 1]) $ k = 1..110: x[111] := 1: level(x[1],
111)17629525510902446638721610471070757887614095360265655160415740633473469

Increase the value of MAXLEVEL only when you know that your code
requires it. Do not increase this value for computations where you can avoid
it. If your code has infinite loops, the increased level of MAXLEVEL can
significantly decrease performance. Always restore the default value for
further computations:
delete x, MAXLEVEL

3-13

3 Mathematics

Enforce Evaluation
MuPAD automatically evaluates results returned by most of the system
functions. However, a few functions can return unevaluated results. For
example, the text2expr function does not evaluate the returned results:
text2expr("2 + 2")2 + 2

The last function and its shortcut %, which return the previously computed
object, also do not evaluate the results:
%2 + 2

For such cases, MuPAD provides the eval function. This function enables you
to enforce evaluation of an expression. For example, enforce evaluation of
the previously returned expression:
eval(%);4

Another example of the function that does not automatically evaluate
returned results is the subs function. This function can simplify expressions
that contain only purely arithmetical operations:
subs(x^2 + 1, x = 0)1

However, the subs function does not evaluate expressions. For example,
substitute the variable x with the value 0 in the following expression that
contains the sine function:
subs(sin(x^2) + 1, x = 0)sin(0) + 1

3-14

Enforce Evaluation

You can use the eval function to enforce evaluation of the results returned by
subs. In this case, MuPAD evaluates the whole expression:
eval(%)1

Alternatively, the subs function provides a more efficient method to evaluate
its results. The EvalChanges option enforces evaluation of the modified parts
of the expression, leaving the unchanged parts out of the evaluation process:
subs(sin(x^2) + 1, x = 0, EvalChanges)1

Most efficiently, evaluate an expression at a particular value of a variable by
using the evalAt function. See Evaluation at a Point.

Also, MuPAD does not evaluate arrays, tables, and polynomials. For example,
the system does not evaluate the identifiers a and b of the following array A:
A := array(1..2, [a, b]): b := 2*a: a := 1: Aarray(1..2, [a, b])

When you access the entries of the array A by using the op function, the
system does not evaluate the entries of A. When you use the indexed access,
the system evaluates the entries of arrays, matrices and tables:
op(A, 1), op(A, 2); A[1], A[2]a, b

1, 2

3-15

3 Mathematics

To evaluate all entries of an array, a table, or a polynomial apply the eval
function to that array, table, or polynomial. Use the map function to apply
eval to an array or a table:
map(A, eval)array(1..2, [1, 2])

For polynomials, use the mapcoeffs function:
p := poly(c*x, [x]): c := 10: mapcoeffs(p, eval)poly(10*x, [x])

delete a, b, c:

3-16

Prevent Evaluation

Prevent Evaluation
When you perform interactive computations in MuPAD, the system tries to
evaluate all expressions before returning them. For example, if the system
can compute an integral, it returns the evaluated result. In most cases, the
result is also simplified:
int(x^2*sin(x), x)2*x*sin(x) - cos(x)*(x^2 - 2)

The hold command enables you to prevent the evaluation of a MuPAD object.
For example, hold lets you display the integral in its symbolic form:
hold(int)(x^2*sin(x), x) = int(x^2*sin(x), x)int(x^2*sin(x), x) = 2*x*sin(x)
- cos(x)*(x^2 - 2)

Also, you can prevent evaluation of an object by using the level function
with the second argument 0. When you use level to prevent evaluation of
identifiers, the results are equivalent to the results obtained with the hold
function:
level(int(x^2*sin(x), x), 0)int(x^2*sin(x), x)

The level function only prevents evaluation of identifiers. If you create a

function without a name, for example x -> sin(x) , level does not
prevent evaluation of that function:
level((x -> sin(x))(PI), 0)0

3-17

3 Mathematics

In this case, use the hold function to prevent evaluation. For example, hold

successfully prevents evaluation of the function x -> sin(x) at
the point x = π:
hold((x -> sin(x))(PI))(x -> sin(x))(PI)

Both hold and level functions prevent the evaluation of an object only in the
particular computation in which you explicitly use them. These functions do
not prevent further evaluations. For example, if you assign an expression
containing hold to a variable, and then call that variable, MuPAD evaluates
the expression:
y := hold(int)(x^2*sin(x), x); yint(x^2*sin(x), x)

2*x*sin(x) - cos(x)*(x^2 - 2)

3-18

Actual and Displayed Results of Evaluations

Actual and Displayed Results of Evaluations
When MuPAD evaluates an expression or executes a command, the output
that the system displays can differ from the actual result. The simplest
example of this behavior is that MuPAD does not display all computed
results. You can suppress outputs by terminating commands with colons.
For example, the evaluation of the following expression returns 4. However,
MuPAD does not display any output because the expression is terminated
with a colon:
2 + 2:The function call last(1) returns the previously computed value.
Alternatively, you can use the operator % to return that value:
%4

MuPAD also suppresses intermediate results obtained within loops and
procedures. For example, the evaluation of the following for loop returns five
numbers. However, the output contains only the final result:
for x from 1 to 5 do hold(_power)(x, 2) = x^2 end_for5^2 = 25

To display intermediate results obtained in loops and procedures, use the
print function inside a loop or a procedure. For example, to display all five
numbers obtained in the for loop, enter:
for x from 1 to 5 do print(hold(_power)(x, 2) = x^2) end_for1^2 = 1

2^2 = 4

3^2 = 9

3-19

3 Mathematics

4^2 = 16

5^2 = 25

Alternatively, use the fprint function. This function typically writes results to
a file indicated by one of the arguments of fprint. When this argument is 0,
the function displays the results on screen:
for x from 1 to 5 do fprint(Unquoted, 0, hold(_power)(x, 2) = x^2); end_for1^2
= 12^2 = 43^2 = 94^2 = 165^2 = 25The print and fprint functions display
outputs differently. The print function uses the typeset mode, which is
how mathematical expressions are typically written on paper. The fprint
function uses the ASCII format. For information about different output modes
available in MuPAD, see Using Different Output Modes.

3-20

Perform Evaluation at a Point

Perform Evaluation at a Point
To evaluate an expression for particular values of identifiers, use the evalAt
function or its shortcut |. For example, evaluate the following expression at
the point x = 0:
reset()diff(x^2*exp(sin(x)), x $ 3) | x = 06

In MuPAD, all computations are symbolic by default. For example, evaluating
the previous expression at x = 1 returns the exact symbolic result:
diff(x^2*exp(sin(x)), x $ 3) | x = 15*cos(1)*exp(sin(1)) - 6*exp(sin(1))*sin(1) +
6*cos(1)^2*exp(sin(1)) + cos(1)^3*exp(sin(1)) - 3*cos(1)*exp(sin(1))*sin(1)

To get a numeric approximation of the result, use the floating-point number
to specify the point at which you want to evaluate an expression:
diff(x^2*exp(sin(x)), x $ 3) | x = 1.0-4.180173868

Alternatively, you can evaluate an expression at a point by using the subs
function with the EvalChanges option. For expressions that contain only free
variables, evalAt and subs return identical results:
diff(sin(x)*cos(x^2), x $ 2) | x = PI, subs(diff(sin(x)*cos(x^2), x $ 2), x = PI,
EvalChanges)4*PI*sin(PI^2), 4*PI*sin(PI^2)

evalAt and subs return different results for the expressions that contain
dependent variables. The subs function does not distinguish between free and
dependent variables. The function replaces both free and dependent variables
with the new value, for example:

3-21

3 Mathematics

subs(x + int(f(x), x = 0..infinity), x = 1)int(f(1), 1 = 0..infinity) + 1

The evalAt function replaces only free variables:
x + int(f(x), x = 0..infinity) | x = 1int(f(x), x = 0..infinity) + 1

3-22

Choose a Solver

Choose a Solver
The general solvers (solve for symbolic solutions and numeric::solve for
numeric approximations) handle a wide variety of equations, inequalities, and
systems. When you use the general solver, MuPAD identifies the equation
or the system as one of the types listed in the table that follows. Then the
system calls the appropriate solver for that type. If you know the type of
the equation or system you want to solve, directly calling the special solver
is more efficient. When you call special solvers, MuPAD skips trying other
solvers. Direct calls to the special solvers can help you to:

• Improve performance of your code

• Sometimes get a result where the general solver fails

The following table lists the types of equations and systems for which MuPAD
offers special solvers. The solve and numeric::solve commands also handle
these types of equations and systems (except systems presented in a matrix
form). Define ordinary differential equations with the ode command before
calling the general solver.

Equation Type
Symbolic
Solvers

Numeric
Solvers

General system of linear equations linsolve numeric::linsolve

General system of linear equations
given in a matrix form A *

‘x→‘=‘b→‘

linalg::matlinsolve numeric::matlinsolve

3-23

3 Mathematics

Equation Type
Symbolic
Solvers

Numeric
Solvers

System of linear equations
given in a matrix form A *

‘x→‘=‘b→‘ , where
A is a Vandermonde matrix. For
example:
matrix([[1, a_1, a_1^2, Symbol::cdot,
Symbol::cdot, Symbol::cdot,
a_1^(n-1)], [1, a_2, a_2^2,
Symbol::cdot, Symbol::cdot,
Symbol::cdot, a_2^(n-1)],
[Symbol::cdot, Symbol::cdot,
Symbol::cdot, Symbol::cdot, " ",
" ", Symbol::cdot], [Symbol::cdot,
Symbol::cdot, Symbol::cdot, " ",
Symbol::cdot, " ", Symbol::cdot],
[Symbol::cdot, Symbol::cdot,
Symbol::cdot, " ", " ", Symbol::cdot,
Symbol::cdot], [1, a_n, a_n,
Symbol::cdot, Symbol::cdot,
Symbol::cdot, a_n^(n-1)]])

See linalg::vandermonde for the
definition and details.

linalg::vandermondeSolve

3-24

Choose a Solver

Equation Type
Symbolic
Solvers

Numeric
Solvers

System of linear equations
given in a matrix form A *

‘x→‘=‘b→‘ , where
A is a Toeplitz matrix. For example:
matrix([[a_0, a_1, a_2,
Symbol::cdot,Symbol::cdot,
Symbol::cdot, Symbol::cdot,
Symbol::cdot, a_n], [‘{a}_{-1}‘,
a_0, a_1, a_2, Symbol::cdot,
Symbol::cdot,Symbol::cdot,
Symbol::cdot, ‘{a}_{n - 1}‘],
[‘{a}_{-2}‘, ‘{a}_{-1}‘, a_0, a_1,
a_2, Symbol::cdot,Symbol::cdot,
Symbol::cdot, ‘{a}_{n - 2}‘],
[Symbol::cdot, " ", Symbol::cdot,
Symbol::cdot, Symbol::cdot, " ", " ", "
", Symbol::cdot], [Symbol::cdot, " ",
" ", Symbol::cdot, Symbol::cdot,
Symbol::cdot, " ", " ", Symbol::cdot],
[Symbol::cdot, " ", " ", " ",
Symbol::cdot, Symbol::cdot,
Symbol::cdot, " ", Symbol::cdot],
[Symbol::cdot, " ", " ", " ", " ",
Symbol::cdot, a_0, a_1, a_2],
[Symbol::cdot, " ", " ", " ", " ",
Symbol::cdot, ‘{a}_{-1}‘, a_0, a_1],
[‘{a}_{-n}‘,Symbol::cdot, Symbol::cdot,
Symbol::cdot,Symbol::cdot,Symbol::cdot,‘{a}_{-2}‘,‘{a}_{-1}‘,
a_0]])

linalg::toeplitzSolve

3-25

3 Mathematics

Equation Type
Symbolic
Solvers

Numeric
Solvers

See linalg::toeplitz for the definition
and details.

System of linear equations
given in a matrix form L * U *

‘x→‘=‘b→‘ .
The lower triangular matrix L and
the upper triangular matrix U form
an LU-decomposition.

linalg::matlinsolveLU

Univariate polynomial equation.
Call these functions to isolate the
intervals containing real roots.

polylib::realroots numeric::polyroots,
numeric::realroots

Bivariate polynomial equation for
which the general solver returns
RootOf. Try calling solve with the
option MaxDegree. If the option does
not help to get an explicit solution,
compute the series expansion of
the solution. Expand the solution
around the point where one of the
variables is 0.

series

System of polynomial equations numeric::polysysroots

Arbitrary univariate equation numeric::realroot,
numeric::realroots

System of arbitrary equations numeric::fsolve

3-26

Choose a Solver

Equation Type
Symbolic
Solvers

Numeric
Solvers

Ordinary differential equation or a
system of ODEs

ode::solve numeric::odesolve

Ordinary differential equation or a
system of ODEs. Call this function
to get a procedure representing the
numeric results instead of getting
the numeric approximation itself.

numeric::odesolve2

Ordinary differential equations on
homogeneous manifolds embedded
in the space of n×m matrices.

numeric::odesolveGeometric

Linear congruence equation numlib::lincongruence

Quadratic congruence equation numlib::msqrts

Polynomial equation. Call this
function to find modular roots.

numlib::mroots

3-27

3 Mathematics

Solve Algebraic Equations and Inequalities

In this section...

“Specify Right Side of Equation” on page 3-28

“Specify Equation Variables” on page 3-28

“Solve Higher-Order Polynomial Equations” on page 3-30

“Find Multiple Roots” on page 3-32

“Isolate Real Roots of Polynomial Equations” on page 3-33

Specify Right Side of Equation
The solver accepts both equations and expressions. If you call solve for an
expression, the command assumes the right side to be 0:
solve(x^3 - 1, x); solve(x^3 = 8, x); solve(x^3 - 3*x^2 = 1 - 3*x, x){1, - 1/2 -
(sqrt(3)*I)/2, - 1/2 + (sqrt(3)*I)/2}

{2, - 1 - sqrt(3)*I, - 1 + sqrt(3)*I}

{1}

Specify Equation Variables
Specifying the variable that you want to solve an equation for is optional.
If you specify a variable, the solve command returns solutions as a set of
numbers. Otherwise, the command returns a set of lists as a solution:
solve(x^2 - 3*x + 2 = 0, x); solve(x^2 - 3*x + 2 = 0){1, 2}

3-28

Solve Algebraic Equations and Inequalities

{[x = 1], [x = 2]}

If your equation contains symbolic parameters, specify the variable for which
you want to solve the equation:
solve(a*x^2 + b*x + c, x)piecewise([a <> 0, {-(b + sqrt(b^2 - 4*a*c))/(2*a), -(b -
sqrt(b^2 - 4*a*c))/(2*a)}], [a = 0 and b <> 0, {-c/b}], [a = 0 and b = 0 and c = 0,
C_], [a = 0 and b = 0 and c <> 0, {}])

If you solve an equation with symbolic parameters and do not specify the
variable, solve uses all parameters as variables and returns a set of all
possible solutions. For example, solving the following equation the solver
assumes that both x and y are free variables. when returning all possible
solutions for this equation, the solver uses an arbitrary parameter z:
solve(x^3 + y^3){[x = z/2 - (sqrt(3)*z*I)/2, y = z], [x = z/2 + (sqrt(3)*z*I)/2,
y = z], [x = -z, y = z]}

To specify more than one variable, provide a list of variables as a second
argument:

3-29

3 Mathematics

solve(a*x^2 + b*x + c, [a, b, c])piecewise([x = 0, {[a = z, b = z1, c = 0]}], [x <> 0,
{[a = -(z1 + x*z)/x^2, b = z, c = z1]}])

solve also can return an expression as x in S, where x is a list of variables for
which you solve an equation, and S is a set of the solution vectors:
solve(a*x + 1/x)matrix([[a], [x]]) in Dom::ImageSet(matrix([[-1/z^2], [z]]), z,
C_ minus {0})

Solve Higher-Order Polynomial Equations
When you solve a higher-order polynomial equation, the solver sometimes
uses RootOf to return the results:
solve(x^3 + 2*x + 1 = 0, x)RootOf(z^3 + 2*z + 1, z)

To get an explicit solution for such equations, try calling the solver with the
option MaxDegree. The option specifies the maximal degree of polynomials for
which the solver tries to return explicit solutions. By default, MaxDegree=2.
Increasing this value, you can get explicit solutions for higher-order
polynomials. For example, specify MaxDegree=3 and get explicit solutions
instead of RootOf for the third-order polynomial:
solve(x^3 + 2*x + 1 = 0, x, MaxDegree = 3){((sqrt(59)*sqrt(108))/108
- 1/2)^(1/3) - 2/(3*((sqrt(59)*sqrt(108))/108 - 1/2)^(1/3)),
1/(3*((sqrt(59)*sqrt(108))/108 - 1/2)^(1/3)) - ((sqrt(59)*sqrt(108))/108
- 1/2)^(1/3)/2 - (sqrt(3)*(2/(3*((sqrt(59)*sqrt(108))/108 -

3-30

Solve Algebraic Equations and Inequalities

1/2)^(1/3)) + ((sqrt(59)*sqrt(108))/108 - 1/2)^(1/3))*I)/2,
1/(3*((sqrt(59)*sqrt(108))/108 - 1/2)^(1/3)) - ((sqrt(59)*sqrt(108))/108
- 1/2)^(1/3)/2 + (sqrt(3)*(2/(3*((sqrt(59)*sqrt(108))/108 - 1/2)^(1/3)) +
((sqrt(59)*sqrt(108))/108 - 1/2)^(1/3))*I)/2}

When you solve a fifth- or higher-order polynomial equation, the solver might
be unable to return the solution explicitly, even with the option MaxDegree:
solve(x^5 + 2*x + 1 = 0, x); solve(x^5 + 2*x + 1 = 0, x, MaxDegree =
5)RootOf(z^5 + 2*z + 1, z)

RootOf(z^5 + 2*z + 1, z)

3-31

3 Mathematics

In general, there are no explicit expressions for the roots of polynomials of
degrees higher than 4. Setting the option MaxDegree to 4 or a higher value
makes no difference.

RootOf symbolically represents the set of the roots of a polynomial. You can
use the expressions containing RootOf in your further computations. For
example, find the sum over all roots of the polynomial:
sum(S^2 + S + 2, S in RootOf(X^5 + 2*X + 1, X));10

To get the numeric approximation of the roots, use the float command:
float(RootOf(X^4 + X + 1, X)){- 0.7271360845 + 0.4300142883*I, -
0.7271360845 + (- 0.4300142883*I), 0.7271360845 + 0.9340992895*I,
0.7271360845 + (- 0.9340992895*I)}

For more details on numeric approximations, see Solving Equations
Numerically.

For univariate polynomial equations, MuPAD also can compute intervals
containing the real roots. See Isolating Real Roots of Polynomial Equations.

Find Multiple Roots
By default, the solve command does not return the multiplicity of the roots.
When the solution of an equation contains multiple roots, MuPAD removes
duplicates:
solve(x^2 - 6*x + 9 = 0, x){3}

3-32

Solve Algebraic Equations and Inequalities

The solver does not display multiple roots because it returns results as a set.
A set in MuPAD cannot contain duplicate elements. To obtain polynomial
roots with their multiplicities, use the option Multiple:
solve(x^2 - 6*x + 9 = 0, x, Multiple); solve((x - 1)^3*(x - 2)^7, x, Multiple){[3, 2]}

{[1, 3], [2, 7]}

Isolate Real Roots of Polynomial Equations
For some polynomial equations, the solver cannot return the explicit symbolic
solutions.
p:= x^5 - 31*x^4/32 + 32*x^3/33 - 33*x^2/34 - 34*x/35 + 35/36: solve(p,
x)RootOf(z^5 - (31*z^4)/32 + (32*z^3)/33 - (33*z^2)/34 - (34*z)/35 + 35/36, z)

If you prefer a solution in a form other than RootOf and want to avoid numeric
methods, use polylib::realroots to find all intervals containing real solutions:
p:= x^5 - 31*x^4/32 + 32*x^3/33 - 33*x^2/34 - 34*x/35 + 35/36:
polylib::realroots(p)[[-2, 0], [3/4, 7/8], [7/8, 1]]

3-33

3 Mathematics

Solve Algebraic Systems

In this section...

“Linear Systems of Equations” on page 3-34

“Linear Systems in a Matrix Form” on page 3-35

“Nonlinear Systems” on page 3-41

Linear Systems of Equations
When solving a linear system of symbolic equations, the general solver
returns a set of solutions:
solve([x + y = 1, 3*x - 2*y = 5], [x, y]){[x = 7/5, y = -2/5]}

The function linsolve returns a list of solutions:
linsolve([x + y = 1, 3*x - 2*y = 5], [x, y])[x = 7/5, y = -2/5]

If there are more unknowns than independent equations in a system, linsolve
solves the system for the first unknowns:
linsolve([x + y = a, 3*x - 2*y = b], [x, y, a, b])[x = (2*a)/5 + b/5, y = (3*a)/5 - b/5]

Providing the unknowns in different order affects the solution:
linsolve([x + y = a, 3*x - 2*y = b], [a, b, x, y])[a = x + y, b = 3*x - 2*y]

3-34

Solve Algebraic Systems

Linear Systems in a Matrix Form
To state the problem of solving the system of linear equations in a matrix
form, use the following steps:

1 Create a matrix A containing the coefficients of the terms of linear
equations. Each equation contributes to a row in A.

2 Create a column vector ‘b→‘ containing the right sides of the
equations.

3 The matrix form of the linear system is A * ‘x→‘=‘b→‘ .
When solving a system in a matrix form, you provide a matrix A and a

vector ‘b→‘ . The solver returns the solutions of the system as a

vector ‘x→‘ .

The dimensions m n of the coefficient matrix define the following types of
linear systems.

m =
n

Square system If the determinant of A is not a zero, a unique
solution of the system exists. Otherwise, the
system has either infinitely many solutions or
no solutions.

m >
n

Overdetermined
system

The system includes more equations than
variables. The system can have one solution,
infinitely many solutions, or no solutions.

m <
n

Underdetermined
system

The system includes more variables than
equations. The system has either infinitely
many solutions or no solutions.

To solve a linear system in a matrix form, use the linalg::matlinsolve
command. For example, solve the following system of linear equations:
eqn1 := 2*x + 3*y = 4: eqn2 := 3*x - 2*y = 1:To convert the system to a matrix
form, use the matrix command to create a matrix of coefficients and a vector
containing right sides of equations:
A := matrix([[2, 3],[3, -2]]); b := matrix([4, 1])matrix([[2, 3], [3, -2]])

3-35

3 Mathematics

matrix([[4], [1]])

As a shortcut for converting a system of linear equations to a matrix form, use
linalg::expr2Matrix:
Ab := linalg::expr2Matrix([eqn1, eqn2], [x,y])matrix([[2, 3, 4], [3, -2, 1]])

Now, use linalg::matlinsolve to solve the system:
linalg::matlinsolve(Ab)matrix([[11/13], [10/13]])

Alternatively, split the matrix Ab into a matrix of coefficients A and a vector
b containing the right sides of equations. Use linalg::matlinsolve to solve
the system:
A := Ab[1..2, 1..2]: b := Ab[1..2, 3..3]: linalg::matlinsolve(A, b)matrix([[11/13],
[10/13]])

If your linear system is originally defined by a matrix equation, using the
matrix form to solve the system is more intuitive. Also, the matrix form

3-36

Solve Algebraic Systems

is convenient for solving equations with many variables because it avoids
creating symbols for these variables. For example, the following matrices
define a linear system:
A := linalg::hilbert(10); b := matrix([i^(-2) $ i = 1..10])matrix([[1, 1/2, 1/3, 1/4,
1/5, 1/6, 1/7, 1/8, 1/9, 1/10], [1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11], [1/3,
1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12], [1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10,
1/11, 1/12, 1/13], [1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14], [1/6, 1/7,
1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15], [1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13,
1/14, 1/15, 1/16], [1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17], [1/9,
1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18], [1/10, 1/11, 1/12, 1/13, 1/14,
1/15, 1/16, 1/17, 1/18, 1/19]])

matrix([[1], [1/4], [1/9], [1/16], [1/25], [1/36], [1/49], [1/64], [1/81], [1/100]])

3-37

3 Mathematics

To solve this system, use linalg::matlinsolve:
linalg::matlinsolve(A, b)matrix([[1451/252], [-99], [1188], [-8008], [63063/2],
[-378378/5], [112112], [-700128/7], [196911/4], [-92378/9]])

3-38

Solve Algebraic Systems

Specialized Matrices
If your system of linear equations can be presented as a specialized matrix,
you can solve the system by calling a special solver. Direct calls to the special
solvers often improve the performance of your code. MuPAD offers special
solvers for linear systems that can be represented by matrices of the following
types:

• A matrix given by L * U * ‘x→‘=‘b→‘ , where
L is a lower triangular matrix, and U is an upper triangular matrix
(LU-decomposition of a matrix)

• Toeplitz matrix. For example, the following matrix is a Toeplitz matrix:

matrix([[a_0, a_1, a_2, Symbol::cdot,Symbol::cdot, Symbol::cdot,
Symbol::cdot, Symbol::cdot, a_n], [‘{a}_{-1}‘, a_0, a_1, a_2, Symbol::cdot,
Symbol::cdot,Symbol::cdot, Symbol::cdot, ‘{a}_{n - 1}‘], [‘{a}_{-2}‘, ‘{a}_{-1}‘,
a_0, a_1, a_2, Symbol::cdot,Symbol::cdot, Symbol::cdot, ‘{a}_{n - 2}‘],
[Symbol::cdot, " ", Symbol::cdot, Symbol::cdot, Symbol::cdot, " ", " ",
" ", Symbol::cdot], [Symbol::cdot, " ", " ", Symbol::cdot, Symbol::cdot,

3-39

3 Mathematics

Symbol::cdot, " ", " ", Symbol::cdot], [Symbol::cdot, " ", " ", " ", Symbol::cdot,
Symbol::cdot, Symbol::cdot, " ", Symbol::cdot], [Symbol::cdot, " ", " ",
" ", " ", Symbol::cdot, a_0, a_1, a_2], [Symbol::cdot, " ", " ", " ", " ",
Symbol::cdot, ‘{a}_{-1}‘, a_0, a_1], [‘{a}_{-n}‘,Symbol::cdot, Symbol::cdot,
Symbol::cdot,Symbol::cdot,Symbol::cdot,‘{a}_{-2}‘,‘{a}_{-1}‘, a_0]])

See linalg::toeplitz for the definition and details.

• Vandermonde matrix. For example, the following matrix is a Vandermonde
matrix::

matrix([[1, a_1, a_1^2, Symbol::cdot, Symbol::cdot, Symbol::cdot,
a_1^(n-1)], [1, a_2, a_2^2, Symbol::cdot, Symbol::cdot, Symbol::cdot,
a_2^(n-1)], [Symbol::cdot, Symbol::cdot, Symbol::cdot, Symbol::cdot, " ", " ",
Symbol::cdot], [Symbol::cdot, Symbol::cdot, Symbol::cdot, " ", Symbol::cdot,
" ", Symbol::cdot], [Symbol::cdot, Symbol::cdot, Symbol::cdot, " ", " ",
Symbol::cdot, Symbol::cdot], [1, a_n, a_n, Symbol::cdot, Symbol::cdot,
Symbol::cdot, a_n^(n-1)]])

See linalg::vandermonde for the definition and details.

3-40

Solve Algebraic Systems

Suppose you want to solve the following system given by a Toeplitz matrix.
Use linalg::toeplitz to define the system:
T := linalg::toeplitz(3, [0, 2, 5, 3, 0])matrix([[5, 3, 0], [2, 5, 3], [0, 2, 5]])

The vector y defines the right sides of equations:
y := matrix([1, 2, 3])matrix([[1], [2], [3]])

To solve a system given by a Toeplitz matrix, use the linalg::toeplitzSolve
special solver. This special solver is more efficient than linalg::matlinsolve.
This solver accepts a vector or a list of diagonal elements t of a Toeplitz
matrix instead of a Toeplitz matrix itself:
t := [0, 2, 5, 3, 0]: x := linalg::toeplitzSolve(t, y)matrix([[16/65], [-1/13], [41/65]])

delete x, y, t, a, b:For the list of special solvers available in MuPAD, see
Choosing Solver. For information on linear algebra functions, see “Linear
Algebra”.

Nonlinear Systems
To solve a system of nonlinear equations symbolically, use the general solver.
For example, solve the following system of trigonometric equations:
solve({4*cos(x) + 2*cos(y) = 3, 2*sin(x) + sin(y) = 1}, [x, y])matrix([[x],
[y]]) in Dom::ImageSet(matrix([[2*arctan((3*sqrt(23))/49 + 16/49) +

3-41

3 Mathematics

2*PI*k], [2*arctan(8/13 - (3*sqrt(23))/13) + 2*PI*l]]), [k, l], [Z_, Z_]) union
Dom::ImageSet(matrix([[2*arctan(16/49 - (3*sqrt(23))/49) + 2*PI*k],
[2*arctan((3*sqrt(23))/13 + 8/13) + 2*PI*l]]), [k, l], [Z_, Z_])

When you use the VectorFormat option, the solver returns the solutions as a
set of vectors. If you want the solver to return one solution from the set, use
the PrincipalValue option. When you use PrincipalValue, the solver still
returns a set, although that set contains only one solution:
solve({4*cos(x) + 2*cos(y) = 3, 2*sin(x) + sin(y) = 1}, [x, y], VectorFormat,
PrincipalValue){matrix([[2*arctan((3*sqrt(23))/49 + 16/49)], [2*arctan(8/13 -
(3*sqrt(23))/13)]])}

You can also approximate the exact symbolic solution numerically:
float(%){matrix([[1.110212402], [-0.9134005193]])}

3-42

Solve Algebraic Systems

If solve cannot compute explicit solutions for a system, use numeric methods
to approximate the solutions. For nonlinear systems, MuPAD offers the
following special solvers:

• For a system of polynomial equations, use numeric::polysysroots.

• For an arbitrary system of equations, use numeric::fsolve.

System of Polynomial Equations
Suppose you want to solve the following system of polynomial equations:
eqn1 := x^3 + x^2*y - 1: eqn2 := x^2 - y^2 = 1/2:The general symbolic solver
produces the result in terms of the RootOf object:
solve({eqn1, eqn2}, [x, y])matrix([[x], [y]]) in Dom::ImageSet(matrix([[z1^2/2 +
z1 + 1/4], [z1]]), z1, RootOf(z^4 + 4*z^3 + z^2 + 2*z - 7/4, z))

To approximate the solutions of the system of polynomial equations
numerically, use the special solver numeric::polysysroots:
numeric::polysysroots({eqn1, eqn2}, [x, y]){[x = - 0.4142135624 + (-
0.6435942529*I), y = - 0.2928932188 + (- 0.9101797211*I)], [x = 0.8604395883,
y = 0.4902614457], [x = 3.967987536, y = -3.904475008], [x = - 0.4142135624 +
0.6435942529*I, y = - 0.2928932188 + 0.9101797211*I]}

System of Arbitrary Nonlinear Equations
Suppose you want to solve the following system of equations:
eqn1 := sin(a) - cos(b) + a*b: eqn2 := (sin(a) + cos(b))^3:The general solver
cannot find a symbolic solution:
solve({eqn1, eqn2}, [a, b])solve([sin(a) - cos(b) + a*b, cos(b) + sin(a)], [a, b])

3-43

3 Mathematics

For numeric approximations of the solutions of the nonlinear system of
equations, use the numeric::fsolve. The numeric solver returns only one
solution:
numeric::fsolve({eqn1, eqn2}, [a, b])[a = -0.0000000002989173645, b =
1512.676862]

Note Note When numeric::fsolve finds one solution, it stops looking for
other solutions.

When you solve an arbitrary nonlinear system numerically, there is no
general way to find all solutions. For more information, see Solving Equations
Numerically.

3-44

Solve Ordinary Differential Equations and Systems

Solve Ordinary Differential Equations and Systems

In this section...

“General Solutions” on page 3-45

“Initial and Boundary Value Problems” on page 3-46

“Special Types of Ordinary Differential Equations” on page 3-47

“Systems of Ordinary Differential Equations” on page 3-49

“Plot Solutions of Differential Equations” on page 3-50

General Solutions
An ordinary differential equation (ODE) contains derivatives of dependent
variables with respect to the only independent variable. If y is a dependent
variable and x is an independent variable, the solution of an ODE is an
expression y(x). The order of the derivative of a dependent variable defines
the order of an ODE.

The solution of a single explicit first-order ODE can always be computed by
integration, provided the solution exists. To define an ordinary differential
equation, use the ode command:
o := ode(y’(x) = y(x)^2, y(x))ode(D(y)(x) - y(x)^2, y(x))

Note Note ode does not accept multivariate expressions such as y(x, t). It
also does not accept piecewise expressions.

Now use the general solve to solve this equation:
solve(o){0, -1/(C3 + x)}Alternatively, you can call the ODE solver directly:
ode::solve(y’(x) = y(x)^2, y(x)){0, -1/(C7 + x)}The general solutions of ODEs
contain arbitrary constants of integration. The solver generates the constants
of integration using the format of an uppercase letter C followed by an
automatically generated number. For example, it generates C1, C2, and so on.

3-45

3 Mathematics

For higher-order ODEs, you can find explicit solutions only for special types of
equations. For example, the following second-order equation has a solution in
terms of elementary functions:
ode::solve(y’’(x) = y(x), y(x)){C11*exp(x) + C10*exp(-x)}The solver introduces
the solution of the following equation in terms of the Bessel functions. MuPAD
uses standard mathematical notations for Bessel and other special functions:
ode::solve(y’’(x) = y’(x) + y(x)*exp(x), y(x)){C13*exp(x/2)*besselJ(1,
2*exp(x/2)*I) + C14*exp(x/2)*besselY(1, 2*exp(x/2)*I)}If you have a second- or
higher-order ODE, nonlinear ODE, or a system of ODEs, a symbolic solution
does not always exist:
ode::solve(y’’(x) = y’(x)^2 + y(x)*exp(x), y(x))solve((D@@2)(y)(x) = D(y)(x)^2 +
exp(x)*y(x), y(x))

For ODEs that cannot be solved symbolically, try using numeric solvers.

Initial and Boundary Value Problems
Many problems in engineering and physics involve solving differential
equations with initial conditions or boundary conditions or both. To specify
initial or boundary conditions, create a set containing an equation and
conditions. For example, state the following initial value problem by defining
an ODE with initial conditions:
IVP := ode({y’’(x) = y(x), y(0) = 5, y’(0) = 1}, y(x))ode({D(y)(0) = 1, (D@@2)(y)(x)
- y(x), y(0) = 5}, y(x))

When you solve an ODE with initial or boundary conditions, the solver adjusts
the integration constants to fit these conditions:
solve(IVP){2*exp(-x) + 3*exp(x)}

3-46

Solve Ordinary Differential Equations and Systems

The following equation has both initial and boundary conditions:
ode::solve({y’’’(x) = y(x), y(0) = 0, y(5) = 1, y’(0) = 0},
y(x)){(exp(5/2)*exp(-x/2)*cos((sqrt(3)*x)/2))/(cos((5*sqrt(3))/2) - exp(15/2)
+ sqrt(3)*sin((5*sqrt(3))/2)) - (exp(5/2)*exp(x))/(cos((5*sqrt(3))/2)
- exp(15/2) + sqrt(3)*sin((5*sqrt(3))/2)) +
(sqrt(3)*exp(5/2)*exp(-x/2)*sin((sqrt(3)*x)/2))/(cos((5*sqrt(3))/2) - exp(15/2) +
sqrt(3)*sin((5*sqrt(3))/2))}

Each independent condition removes one integration constant:
ode::solve({y’’’(x) = y’(x)}, y(x)){C26 + C28*exp(x) + C27*exp(-x)}ode::solve({y’’’(x)
= y’(x), y(0) = 0}, y(x)){C34 + C33*exp(x) - exp(-x)*(C33 + C34)}ode::solve({y’’’(x)
= y’(x), y(0) = 0, y(1) = 1}, y(x)){C39 + (exp(x)*(C39 + exp(1) -
C39*exp(1)))/(exp(2) - 1) - (exp(-x)*(exp(1) - C39*exp(1) + C39*exp(2)))/(exp(2) -
1)}ode::solve({y’’’(x) = y’(x), y(0) = 0, y(1) = 1, y’(0) = 1/2}, y(x));{(exp(-x)*(3*exp(1)
- exp(2)))/(2*(exp(2) - 2*exp(1) + 1)) - (4*exp(1) - exp(2) + 1)/(2*(exp(2) -
2*exp(1) + 1)) + (exp(x)*(exp(1) + 1))/(2*(exp(2) - 2*exp(1) + 1))}

Special Types of Ordinary Differential Equations
Suppose, the equation you want to solve belongs to the Clairaut type:

3-47

3 Mathematics

o:= ode(y(x) = x*y’(x) + y’(x)^3, y(x)): solve(o){C44^3 + x*C44,
-(2*sqrt(3)*(-x)^(3/2))/9, (2*sqrt(3)*(-x)^(3/2))/9}The solver recognizes the type
of the equation and applies the algorithm for solving Clairaut equations. To
improve performance, call the solver with the option Type = Clairaut:
solve(o, Type = Clairaut){C45^3 + x*C45, -(2*sqrt(3)*(-x)^(3/2))/9,
(2*sqrt(3)*(-x)^(3/2))/9}The solver tries to recognize and tries to solve the
following classes of ODEs.

Type Equation ODE Solver Option

Abel differential
equation

y’(x) = a_0(x) +
a_1(x)*y(x) +
a_2(x)*y(x)^2 +

a_3(x)*y(x)^3

Abel

Bernoulli differential
equation

y’(x) + p(x)*y =

q(x)*y(x)^n
where n ≠ 0 and n ≠ 1

Bernoulli

Chini differential
equation

y’(x) = a_0(x) +
a_1(x)*y(x) +

a(x)*y(x)^n

Chini

Clairaut differential
equation

y(x) = x*y’(x) +

g(y’(x))

Clairaut

Exact first-order
ordinary differential
equation

y’(x) = f(x,

y)
that can be represented
as M(x, y)dx + N(x, y)dy
= 0 where diff(M(x,
y), y) = diff(N(x, y),

x)

ExactFirstOrder

Exact second-order
ordinary differential
equation

y’’(x) = f(x, y(x),

y’(x)) ,
if a first integral turns
this equation into a
first-order ODE

ExactSecondOrder

3-48

Solve Ordinary Differential Equations and Systems

Type Equation ODE Solver Option

Linear homogeneous
ordinary differential
equation

Dy = 0, where D is
a linear differential
operator

Homogeneous

Lagrange differential
equation

y(x) = x*f(y’(x)) +

g(y’(x))

Lagrange

Riccati differential
equation

y’(x) + p(x)*y(x)
= q(x)*y(x)^2 +

r(x)

Riccati

If the solver cannot identify the equation with the type you indicated, it issues
a warning and returns the special value FAIL:
ode::solve(y’(x) + y(x) = x, y(x), Type = Homogeneous) Warning: Cannot detect
the homogeneous ODE. [ode::homogeneous] FAIL

Systems of Ordinary Differential Equations
To solve a system of differential equations, specify the system as a set of
equations:
s := {y’(x) = z(x), z’(x) = y(x) + 2*z(x)}:Call the ode::solve function specifying the
set of functions {y(x), z(x)} for which you want to solve the system:
ode::solve(s, {y(x), z(x)}){[z(x) = exp(-x*(sqrt(2) - 1))*(C47 - sqrt(2)*C47 +
C46*exp(x*(sqrt(2) - 1))*exp(x*(sqrt(2) + 1)) + sqrt(2)*C46*exp(x*(sqrt(2) -
1))*exp(x*(sqrt(2) + 1))), y(x) = exp(-x*(sqrt(2) - 1))*(C47 + C46*exp(x*(sqrt(2)
- 1))*exp(x*(sqrt(2) + 1)))]}Now, suppose the system of differential equations
appears in a matrix form. For example, define the system Y’ = A*Y +

B , where A, B, and Y represent the following matrices:
Y:= matrix([x(t), y(t)]): A:= matrix([[1, 2], [-1, 1]]): B:= matrix([1, t]):The
ode::solve function does not accept matrices. To be able to use this solver,
extract the components of the matrix and include them in a set. Use the
op function to extract the equations from the matrix. Then, use the braces
to create a set of the equations. You can omit the right sides of equations, in
which case MuPAD assumes them to be 0:

3-49

3 Mathematics

s := {op(diff(Y, t) - A*Y - B)}{diff(y(t), t) - t + x(t) - y(t), diff(x(t), t) - x(t) -
2*y(t) - 1}

Now, specify the set of functions {x(t), y(t)} for which you want to solve the
system. Solve the system and simplify the result:
simplify(ode::solve(s, {x(t), y(t)})){[x(t) = (2*t)/3 + C48*exp(t)*cos(sqrt(2)*t) -
C49*exp(t)*sin(sqrt(2)*t) + 1/9, y(t) = - t/3 - (sqrt(2)*C49*exp(t)*cos(sqrt(2)*t))/2
- (sqrt(2)*C48*exp(t)*sin(sqrt(2)*t))/2 - 2/9]}If you are solving several similar
systems of ordinary differential equations in a matrix form, create your own
solver for these systems, and then use it as a shortcut. The solver for such
systems must be a function that accepts matrices as input arguments, and
then performs all required steps. For example, create a solver for a system
of the first-order linear differential equations in a matrix form Y’ = A*Y +

B , where the components of functions depend on the variable
t:
solveLinearSystem := (A, B, Y) -> solve(ode({op(diff(Y, t) - A*Y - B)},
{op(Y)})):The solveLinearSystem function accepts matrices as input
parameters, creates a matrix of equations, extracts these equations to a set,
and solves the system:
Y:= matrix([x(t), y(t)]): A:= matrix([[1, 2], [-3, 1]]): B:= matrix([2,
t]): simplify(solveLinearSystem(A, B, Y)){[x(t) = (2*t)/7 +
C50*exp(t)*cos(sqrt(6)*t) - C51*exp(t)*sin(sqrt(6)*t) - 10/49, y(t) = - t/7 -
(sqrt(6)*C51*exp(t)*cos(sqrt(6)*t))/2 - (sqrt(6)*C50*exp(t)*sin(sqrt(6)*t))/2
- 37/49]}

Plot Solutions of Differential Equations
Suppose you want to solve the following equation. The solver returns the
results as a set even if the set contains only one element:
f := ode::solve({y’’(x) = x*y’(x), y(0) = 0, y’(0) = 1/3},
y(x)){-(sqrt(2)*sqrt(PI)*erf((sqrt(2)*x*I)/2)*I)/6}

3-50

Solve Ordinary Differential Equations and Systems

The plotting functions in MuPAD do not accept sets. To plot the solution,
access the elements of a solution set using square brackets or the op command:
plotfunc2d(f[1], x = -3..3)

If you have more than one element of a solution set, you can access a
particular element. For example, pick the second element of the solution
set for the system of ODEs:
f := ode::solve({y’(x) = z(x), z’(x) = y(x) + 2*z(x), y(0) = 0, z(0) = 1}, {y(x),
z(x)}){[z(x) = exp(-x*(sqrt(2) - 1))*((exp(x*(sqrt(2) - 1))*exp(x*(sqrt(2) + 1)))/2
- sqrt(2)/4 + (sqrt(2)*exp(x*(sqrt(2) - 1))*exp(x*(sqrt(2) + 1)))/4 + 1/2), y(x) =
-exp(-x*(sqrt(2) - 1))*(sqrt(2)/4 - (sqrt(2)*exp(x*(sqrt(2) - 1))*exp(x*(sqrt(2) +
1)))/4)]}

3-51

3 Mathematics

The solver returns results for a system as a set that contains a list. To open
the set and access the list, use square brackets or the op command. To access
a particular entry of this list, use square brackets:
f[1][2]; op(f)[2]y(x) = -exp(-x*(sqrt(2) - 1))*(sqrt(2)/4 - (sqrt(2)*exp(x*(sqrt(2)
- 1))*exp(x*(sqrt(2) + 1)))/4)

y(x) = -exp(-x*(sqrt(2) - 1))*(sqrt(2)/4 - (sqrt(2)*exp(x*(sqrt(2) -
1))*exp(x*(sqrt(2) + 1)))/4)

To access the right side of the equation, use square brackets or the rhs
command:
f[1][2][2]; rhs(f[1][2])-exp(-x*(sqrt(2) - 1))*(sqrt(2)/4 - (sqrt(2)*exp(x*(sqrt(2)
- 1))*exp(x*(sqrt(2) + 1)))/4)

-exp(-x*(sqrt(2) - 1))*(sqrt(2)/4 - (sqrt(2)*exp(x*(sqrt(2) - 1))*exp(x*(sqrt(2)
+ 1)))/4)

3-52

Solve Ordinary Differential Equations and Systems

Plot this solution:
plotfunc2d(f[1][2][2], x = -1..1)

To plot a solution of the system of ODEs in 3-D, use the plot::Curve3d
command:
solution := plot::Curve3d([x, f[1][2][2], f[1][1][2]], x = -2..2, GridVisible):
plot(solution)

3-53

3 Mathematics

MuPAD provides the functions plot::Ode2d and plot::Ode3d for visualizing
solutions of ODEs. Also, you can plot a vector field associated with an
ODE. For all graphic capabilities available in MuPAD, see Graphics and
Animations.

3-54

Test Results

Test Results

In this section...

“Solutions Given in the Form of Equations” on page 3-55

“Solutions Given as Memberships” on page 3-57

“Solutions Obtained with IgnoreAnalyticConstraints” on page 3-59

Solutions Given in the Form of Equations
Suppose you want to verify the solutions of this polynomial equation:
equation := x^3 + 4 = 0: solution := solve(equation){[x = -2^(2/3)], [x =
2^(2/3)*(1/2 + (sqrt(3)*I)/2)], [x = -2^(2/3)*(- 1/2 + (sqrt(3)*I)/2)]}

To verify the correctness of the returned solutions, substitute the solutions
into the original equation. To substitute the results given in the form of
equations, evaluate the original equations at the solution points. Use evalAt
or the vertical bar | as a shortcut. For the first solution, the command
returns the identity:
equation | solution[1]0 = 0

To check that the left side of the equation is equal to the right side, use the
testeq command:
testeq(equation | solution[1])TRUE

For the second solution, evalAt returns an equation with an unsimplified left
side. In many cases, MuPAD does not automatically simplify expressions,
for example:

3-55

3 Mathematics

equation | solution[2];4*(1/2 + (sqrt(3)*I)/2)^3 + 4 = 0

testeq simplifies the expressions on both sides of the equation:
testeq(equation | solution[2])TRUE

As an alternative to evaluating at a point, use the subs command to substitute
the solution into the original equation:
equation := x^3 + 4 = 0: solution := solve(equation); testeq(subs(equation,
solution[1])); testeq(subs(equation, solution[2])); testeq(subs(equation,
solution[3])){[x = -2^(2/3)], [x = 2^(2/3)*(1/2 + (sqrt(3)*I)/2)], [x = -2^(2/3)*(- 1/2
+ (sqrt(3)*I)/2)]}

TRUE

TRUE

TRUE

To verify the solutions of a system of equations, test each equation separately:
equations := {x^2 + 2*y = 3, 4*x^2 + 5*y = 6}: solutions := solve(equations,
{x, y}); testeq((equations|solutions[1])[1]); testeq((equations|solutions[1])[2]);

3-56

Test Results

testeq((equations|solutions[2])[1]); testeq((equations|solutions[2])[2]){[x = -I,
y = 2], [x = I, y = 2]}

TRUE

TRUE

TRUE

TRUE

Solutions Given as Memberships
Suppose you want to verify the solutions of this trigonometric equation:
equation := sin(x)/x = 0: solution := solve(equation, x)Dom::ImageSet(PI*k,
k, Z_ minus {0})

To verify the results, evaluate the original equation at the solution points.
Evaluating at a point requires a solution to be in the form of an equation. If
you have a solution in the form of membership, evalAt returns an error:
equation | op(solution) Error: An equation is expected. You cannot use the
expression x = solution directly because solution is represented by a set.
This set contains the solution for the variable x, the independent variable k,
and the condition on the variable k:
op(solution)PI*k, [k], [Z_ minus {0}]

3-57

3 Mathematics

Extract the solution for x, the variable k, and the conditions on the variable k
from the set. MuPAD returns the variable k and its conditions as lists. Use
the additional square brackets to extract k and the conditions from the lists:
op(solution)[1]; op(solution)[2][1]; op(solution)[3][1]PI*k

k

Z_ minus {0}

Now evaluate the original equation at the solution points x = πk under the
conditions for k:
testeq(equation | x = op(solution)[1]) assuming op(solution)[2][1] in
op(solution)[3][1]TRUE

Alternatively, use the subs command to substitute the solution into the
original equation:
testeq(subs(equation, x = op(solution)[1])) assuming op(solution)[2][1] in
op(solution)[3][1]TRUE

3-58

Test Results

Solutions Obtained with IgnoreAnalyticConstraints
If you verify solutions of an equation or a system solved with the
IgnoreAnalyticConstraints option, testeq can return FALSE or UNKNOWN,
for example:
equation := ln(x) + ln(x + 10) = ln(y): solutions := solve(equation, x,
IgnoreAnalyticConstraints); testeq(subs(equation, x = solutions[1]));
testeq(subs(equation, x = solutions[2])){sqrt(y + 25) - 5, - sqrt(y + 25) - 5}

UNKNOWN

FALSE

When you solve an equation, inequality or a system using the
IgnoreAnalyticConstraints option, the solver uses an additional set
of simplified mathematical rules. These rules intentionally trade off
mathematical strictness and correctness for simplicity of the results. Although
this option often leads to the most practical and expected results, it also can
lead to incorrect results. For the set of rules IgnoreAnalyticConstraints
applies, see the help page of the solve command.

To verify such solutions, try using the same IgnoreAnalyticConstraints
option for testeq. When you use this option, the testeq command does not
guarantee that the solutions are correct everywhere on the complex plane.
The command checks that the solutions are correct for the values of the
parameters for which the rules applied by IgnoreAnalyticConstraints are
valid:
testeq(subs(equation, x = solutions[1]), IgnoreAnalyticConstraints);
testeq(subs(equation, x = solutions[2]), IgnoreAnalyticConstraints)TRUE

3-59

3 Mathematics

FALSE

The testeq command did not verify both solutions. When trying to prove
the equivalence of two expressions, testeq runs random tests before
applying IgnoreAnalyticConstraints. If tests for random values of
identifiers show that expressions are not equivalent, testeq disregards the
IgnoreAnalyticConstraints option and returns FALSE. To suppress running
random tests, set the number of these tests to zero:
testeq(subs(equation, x = solutions[2]), NumberOfRandomTests = 0,
IgnoreAnalyticConstraints)TRUE

Verifying numeric results returned by the solver using
IgnoreAnalyticConstraints does not require using the same
option. Substitute numeric results into the original equations and call testeq
to prove equivalence of the expressions on both sides of the equations:
equation := x^(11/2) = 1: solution := solve(equation,
IgnoreAnalyticConstraints); testeq(equation | solution[1]){[x = 1]}

TRUE

3-60

If Results Look Too Complicated

If Results Look Too Complicated

In this section...

“Use Options to Narrow Results” on page 3-61

“Use Assumptions to Narrow Results” on page 3-63

“Simplify Solutions” on page 3-64

Use Options to Narrow Results
By default, the MuPAD solvers return all possible solutions regardless of
their length. Also, by default the solvers assume the solutions are complex
numbers. To limit the number of the solutions to some specific ones, the
solvers provide a number of options. For information about the options
accepted by a particular solver, see the page for that solver. For example, for
the list of options provided by the general solver, see the solve help page.

The following equation has five solutions:
solve(x^5 - 1, x){1, - sqrt(5)/4 - 1/4 - (sqrt(2)*sqrt(5 - sqrt(5))*I)/4, - sqrt(5)/4
- 1/4 + (sqrt(2)*sqrt(5 - sqrt(5))*I)/4, sqrt(5)/4 - 1/4 - (sqrt(2)*sqrt(sqrt(5) +
5)*I)/4, sqrt(5)/4 - 1/4 + (sqrt(2)*sqrt(sqrt(5) + 5)*I)/4}

If you need a solution in real numbers, use the Real option. The only real
solution of this equation is 1:
solve(x^5 - 1, x, Real){1}

3-61

3 Mathematics

For the following standard quadratic equation, the solver returns the
solutions for all possible values of symbolic parameters a, b, and c:
solve(a*x^2 + b*x + c, x)piecewise([a <> 0, {-(b + sqrt(b^2 - 4*a*c))/(2*a), -(b -
sqrt(b^2 - 4*a*c))/(2*a)}], [a = 0 and b <> 0, {-c/b}], [a = 0 and b = 0 and c = 0,
C_], [a = 0 and b = 0 and c <> 0, {}])

To disregard special cases, use the IgnoreSpecialCases option:
solve(a*x^2 + b*x + c, x, IgnoreSpecialCases){-(b + sqrt(b^2 - 4*a*c))/(2*a),
-(b - sqrt(b^2 - 4*a*c))/(2*a)}

For the following equation, the solver returns a complete, but rather long and
complicated solution:
solve(x^(5/2) + 1/x^(5/2) = 1, x){1/(1/2 - (sqrt(3)*I)/2)^(2/5), 1/(1/2 +
(sqrt(3)*I)/2)^(2/5), -(sqrt(5)/4 + 1/4 - (sqrt(2)*sqrt(5 - sqrt(5))*I)/4)/(1/2 -
(sqrt(3)*I)/2)^(2/5), -(sqrt(5)/4 + 1/4 + (sqrt(2)*sqrt(5 - sqrt(5))*I)/4)/(1/2 -
(sqrt(3)*I)/2)^(2/5), -(sqrt(5)/4 + 1/4 - (sqrt(2)*sqrt(5 - sqrt(5))*I)/4)/(1/2 +
(sqrt(3)*I)/2)^(2/5), -(sqrt(5)/4 + 1/4 + (sqrt(2)*sqrt(5 - sqrt(5))*I)/4)/(1/2 +
(sqrt(3)*I)/2)^(2/5)}

3-62

If Results Look Too Complicated

If you want a simpler and more practical solution, try the
IgnoreAnalyticConstraints option. With this option, the solver uses a
set of simplified mathematical rules that are not generally correct. The
returned solutions tend to be most useful for many problems in engineering
and physics. Note that with this option the solver does not guarantee the
correctness and completeness of the result:
solve(x^(5/2) + 1/x^(5/2) = 1, x, IgnoreAnalyticConstraints){1/(1/2 -
(sqrt(3)*I)/2)^(2/5), 1/(1/2 + (sqrt(3)*I)/2)^(2/5)}

See the list of the options accepted by the general solver solve.

Use Assumptions to Narrow Results
If you want to limit the number of solutions, but the list of options available
for solve does not have an appropriate option, try using assumptions. Suppose,
for the following polynomial expression you need only positive solutions. Use
the assuming command to temporarily assume that x is a positive number.
Under this assumption, the solver returns four positive solutions:
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)
assuming x > 0{1, sqrt(17)/2 - 1/2, 5*sqrt(2), sqrt(5) - 1}

3-63

3 Mathematics

Without the assumption, the solver returns all seven solutions:
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800,
x){1, - sqrt(5) - 1, - sqrt(17)/2 - 1/2, sqrt(17)/2 - 1/2, -5*sqrt(2), 5*sqrt(2), sqrt(5)
- 1}

To make several assumptions, combine them with and:
solve([a*x + b*y = c, h*x - g*y = f], [x, y]) assuming f = c and a = h and a <>
0 / { -- f + g z -- } { -- f -- } \ piecewise| { | x = -------, y = z | } if b + g = 0, { |
x = -, y = 0 | } if b + g <> 0 | \ { -- h -- } { -- h -- } / For more information,
see “Properties and Assumptions”.

Simplify Solutions
While solving equations, MuPAD automatically simplifies many objects such
as some function calls and arithmetical expressions with numbers. Automatic
simplifications reduce the complexity of expressions used in intermediate
steps, which improves performance of the solvers.

MuPAD solvers do not call the simplification functions for final results. When
you call the solve command, you can get a long and complicated solution:
S:= solve(ln(x) + ln(5) = x^2 + ln(3), x){exp(-wrightOmega(ln(18/25) +
PI*I)/2)*exp(ln(3) - ln(5))}

To simplify such results, use simplify or Simplify. The simplify function is
faster:
simplify(S){-(sqrt(2)*sqrt(wrightOmega(ln(18/25) + PI*I))*I)/2}

3-64

If Results Look Too Complicated

Simplify is slower, but more powerful:
Simplify(S){(3*exp(-wrightOmega(ln(18/25) + PI*I)/2))/5}

For more information, see “Simplification”.

3-65

3 Mathematics

If Results Differ from Expected

In this section...

“Verify Equivalence of Expected and Obtained Solutions” on page 3-66

“Verify Equivalence of Solutions Containing Arbitrary Constants” on page
3-67

“Completeness of Expected and Obtained Solutions” on page 3-70

Verify Equivalence of Expected and Obtained
Solutions
Symbolic solutions can be returned in different, but mathematically
equivalent forms. MuPAD continuously improves its functionality, including
solvers and simplifiers. These improvements can cause different releases
of MuPAD to return different forms of the same symbolic expressions. For
example, when you solve the equation
eq := ode({y’’(t)=-a^2*y(t), y(0)=1, y’(PI/a)=0}, y(t)):MuPAD 5.1 (R2008b)
returns:
solution := solve(eq): eval(solution) assuming a <> 0{cos(a*t)}

For the same equation, MuPAD 5.2 (R2009a) returns:
solution := solve(eq): eval(solution) assuming a <> 0 {(1/exp(a*t*I))/2 +
exp(a*t*I)/2}

Note testeq cannot compare sets. To test mathematical equality of the
solutions returned as sets, compare each pair of the solutions individually.

3-66

If Results Differ from Expected

If a returned solution differs from what you expect, test mathematical
equality of the solutions:
testeq(cos(a*t), (1/exp(a*t*I))/2 + exp(a*t*I)/2)TRUE

Verify Equivalence of Solutions Containing Arbitrary
Constants

Equal Arbitrary Constants
Verifying solutions with arbitrary constants can be a lot more complicated
than verifying simple solutions without constants. In such solutions, consider
arbitrary constants as symbolic parameters. In simple cases, you can assume
that the parameters are equal. For example, solve the following ordinary
differential equation. The form of the returned solution depends on the type of
an equation. The solver can identify an equation with different equation types:
reset()o:= ode(y’(x) = (- 1/x + 2*I)*y(x) + 1/x*y(x)^2, y(x)): o1 := solve(o){0, exp(-
ln(x) + 2*x*I)/(C2 + 2*Ei(1, -2*x*I)*I + exp(2*x*I)/x)}

If you explicitly specify the type as Bernoulli, the solver returns another form
of the result:
o2 := solve(o, Type = Bernoulli){0, (x*exp(- ln(x) + 2*x*I))/(exp(2*x*I) + C3*x +
2*x*Ei(1, -2*x*I)*I)}

3-67

3 Mathematics

Check the equality of these two solutions by calling the testeq command for
each pair of the solutions. Remember that testeq cannot compare sets.
testeq(o1[1], o2[1]), testeq(o1[2], o2[2])TRUE, FALSE

The second solution returns FALSE because testeq does not know that C2 and
C3 are arbitrary constants. When you explicitly assume the equality of the
constants, testeq confirms that the solutions are mathematically equal:
testeq(o1[1], o2[1]) assuming C2 = C3, testeq(o1[2], o2[2]) assuming C2 =
C3TRUE, TRUE

Arbitrary Constants Representing Different Expressions
Verifying mathematical equality of the results by assuming that the arbitrary
constants are equal does not always work. The solver can choose arbitrary
constants to represent different expressions. For example, one form of a
solution can include C1 and another form of the same solution can include

exp(C2) . In this case, you need to assume that C1 = exp(C2) .

If the results include arbitrary constants, the number of elements in a
solution set can depend on the form in which MuPAD returns the results. For
example, if you specify the type of the following ordinary differential equation
as Chini, the solver returns three separate solutions:
o:= ode(y’(x) = x*y(x)^2 + x*y(x) + x, y(x)): L:= solve(o, Type = Chini){- 1/2 -
(sqrt(3)*I)/2, - 1/2 + (sqrt(3)*I)/2, (sqrt(3)*tan((sqrt(3)*(x^2/2 + C4))/2))/2 - 1/2}

Specifying the type of the same ordinary differential equation as Riccati gives
you two separate solutions:

3-68

If Results Differ from Expected

M := solve(o, Type = Riccati){- 1/2 - (sqrt(3)*I)/2, exp(-(sqrt(3)*x^2*I)/2)/(C5 -
(sqrt(3)*exp(-(sqrt(3)*x^2*I)/2)*I)/3) - 1/2 - (sqrt(3)*I)/2}

When you specify the equation type as Riccati, the solver returns a more
general result. This result combines the second and third elements of the set
returned for the Chini type. The additional solution for the Chini equation
appears at a particular value of the integration constant for the Riccati
equation. Find the value of the constant at which the more general solution
for the Riccati equation turns to the second solution for the Chini equation:
solve(L[2] = M[2], C5){0}

Use evalAt to verify that if the integration constant is 0, the solution for
Riccati equation gives the additional solution that you see for Chini type:
evalAt(M[2], C5 = 0)- 1/2 + (sqrt(3)*I)/2

You can find the dependency between the constants in the solutions returned
for Riccati and Chini types. As a first step, rewrite the results using similar
terms. For example, rewrite the expression with exponents in terms of
tangents:
m2 := rewrite(M[2], tan)- (tan((sqrt(3)*x^2)/4) + I)/((tan((sqrt(3)*x^2)/4) -
I)*(C5 + (sqrt(3)*(tan((sqrt(3)*x^2)/4) + I)*I)/(3*(tan((sqrt(3)*x^2)/4) - I)))) -
1/2 - (sqrt(3)*I)/2

3-69

3 Mathematics

Define the constant C5 in terms of C4:
C5 := simplify(solve(L[3] = m2, C5, IgnoreSpecialCases)){-sqrt(3)*(-
sin(sqrt(3)*C4)/3 + (cos(sqrt(3)*C4)*I)/3)}

Now if you want to verify that the two forms of the solution are equivalent,
substitute the constant in Riccati solution with this expression.

For more information on testing mathematical equivalence of the solutions,
see Testing Results.

Completeness of Expected and Obtained Solutions

Special Cases
The returned results can differ from what you expected due to incompleteness
of the expected or the returned solution set. Complete sets of solutions account
for all the special cases for all symbolic parameters and variables included in
an equation. Complete solutions can be very large and complicated. Often
you need only one practical solution from a long or infinite solution set.
Some solvers are designed to return incomplete, but practical solutions. For
example, consider the equation ax + b = y. When solving this equation in the
MATLAB Command Window, the toolbox ignores special cases:

>> solve(’a*x + b = y’)

ans =

3-70

If Results Differ from Expected

-(b - y)/a

MuPAD returns the complete set of solutions accounting for all possible
values of the symbolic parameters a, b, and y:
solve(a*x + b = y, x)piecewise([a <> 0, {-(b - y)/a}], [b = y and a = 0, C_], [b <>
y and a = 0, {}])

Solving the equation in MuPAD with the IgnoreSpecialCases option, you
get the same short result as in the MATLAB Command Window:
solve(a*x + b = y, x, IgnoreSpecialCases){-(b - y)/a}

Infinite Solution Sets
Some equations have an infinite number of solutions. When solving the same
equation in the MATLAB Command Window, you get only one solution from
the infinite set:

>> syms x;

>> solve(sin(x))

ans =

0

By default, the MuPAD solver returns all the solutions:
S := solve(sin(x), x)Dom::ImageSet(PI*k, k, Z_)

3-71

3 Mathematics

To get one element of the solution set, use the solvelib::getElement command:
solvelib::getElement(S)0

If you want the solver to return just one solution, use the PrincipalValue
option:
S := solve(sin(x), x, PrincipalValue){0}

PrincipalValue can help you shorten the results omitting all solutions,
except one. The option does not allow you to select a particular solution.

3-72

Solve Equations Numerically

Solve Equations Numerically

In this section...

“Get Numeric Results” on page 3-73

“Solve Polynomial Equations and Systems” on page 3-75

“Solve Arbitrary Algebraic Equations and Systems” on page 3-77

“Isolate Numeric Roots” on page 3-82

“Solve Differential Equations and Systems” on page 3-83

Get Numeric Results
There are two methods to get numeric approximations of the solutions:

• Solve equations symbolically and approximate the obtained symbolic
results numerically. Using this method, you get numeric approximations
of all the solutions found by the symbolic solver. If the symbolic solver
fails to find any solutions, MuPAD calls the numeric solver directly. For
nonpolynomial equations, the numeric solver returns only one solution.
Using the symbolic solver and post-processing its results method requires
more time than a purely numeric solver and can significantly decrease
performance.

• Solve equations using numeric methods from the beginning. This method is
faster, but for nonpolynomial equations the numeric solver returns only the
first solution it finds. You can use the AllRealRoots option to make the
solver look for other real roots. Even with this option, the solution set can be
incomplete. Using AllRealRoots can significantly decrease performance.

Approximate Symbolic Solutions Numerically
When you solve an equation symbolically, the solver does not always return
results in an explicit form. For example, the solver can represent solutions
using RootOf:
solve(x^3 + x + 1, x)RootOf(z^3 + z + 1, z)

3-73

3 Mathematics

If you have a symbolic solution that you want to approximate numerically,
use the float command:
float(%){-0.6823278038, 0.3411639019 + (- 1.1615414*I), 0.3411639019 +
1.1615414*I}

Use float to approximate the solutions of the symbolic system:
float(solve([x^3 + x^2 + 2*x = y, y^2 = x^2], [x, y])){[x = - 0.5 + 1.658312395*I,
y = 0.5 + (- 1.658312395*I)], [x = - 0.5 + 0.8660254038*I, y = - 0.5 +
0.8660254038*I], [x = - 0.5 + (- 0.8660254038*I), y = - 0.5 + (- 0.8660254038*I)],
[x = - 0.5 + (- 1.658312395*I), y = 0.5 + 1.658312395*I], [x = 0.0, y = 0.0]}

Approximating symbolic solutions numerically, you get the complete set of
solutions. For example, solve the following equation symbolically:
S := solve(sin(x^2) = 1/2, x)Dom::ImageSet(-(sqrt(6)*sqrt(PI)*sqrt(12*k +
1))/6, k, Z_) union Dom::ImageSet((sqrt(6)*sqrt(PI)*sqrt(12*k + 1))/6, k,
Z_) union Dom::ImageSet(-(sqrt(6)*sqrt(PI)*sqrt(12*k + 5))/6, k, Z_) union
Dom::ImageSet((sqrt(6)*sqrt(PI)*sqrt(12*k + 5))/6, k, Z_)

Suppose, you want to get numeric results instead of expressions containing
PI. The float command returns the infinite solution set:
float(S)Dom::ImageSet(0.7236012546*sqrt(12.0*k + 1.0), k, Z_)
union Dom::ImageSet(0.7236012546*sqrt(12.0*k + 5.0), k, Z_) union

3-74

Solve Equations Numerically

Dom::ImageSet(-0.7236012546*sqrt(12.0*k + 1.0), k, Z_) union
Dom::ImageSet(-0.7236012546*sqrt(12.0*k + 5.0), k, Z_)

Solve Equations Numerically
To avoid getting symbolic solutions and to proceed with numeric methods, use
the numeric::solve command. If an equation is not polynomial, the numeric
solver returns only one solution:
numeric::solve(sin(x^2) = 1/2, x){-226.9444724}

Solve Polynomial Equations and Systems
For polynomial equations, the numeric solver returns all solutions:
numeric::solve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 = 0, x){- 0.8801137713 +
(- 0.7633158339*I), 0.5051137713 + 0.8159896507*I, 0.5051137713 + (-
0.8159896507*I), - 0.8801137713 + 0.7633158339*I}

When called with the option AllRealRoots, the solver omits all complex
roots. For example, when you symbolically solve the polynomial equation and
approximate the solutions, you get all solutions:
numeric::solve(4*x^4 + 3*x^3 + 2*x^2 + x -1 = 0, x){-0.8763850947,
0.3971412064, - 0.1353780559 + 0.8366380364*I, - 0.1353780559 + (-
0.8366380364*I)}

3-75

3 Mathematics

To limit the solution set to the real solutions only, use the option
AllRealRoots:
numeric::solve(4*x^4 + 3*x^3 + 2*x^2 + x - 1 = 0, x,
AllRealRoots){-0.8763850965, 0.3971412051}

Using numeric::solve, you also can solve a system of polynomial equations:
numeric::solve([x^3 + 2*x = y, y^2 = x], [x, y]){[x = - 0.2812406533 + (-
1.234872423*I), y = 0.7018735688 + (- 0.8796971979*I)], [x = 0.2365742943, y
= 0.4863890359], [x = 0.162953506 + 1.615154465*I, y = - 0.9450680867 + (-
0.8545175145*I)], [x = 0.1629535064 + (- 1.615154465*I), y = - 0.9450680869
+ 0.8545175144*I], [x = 0, y = 0], [x = - 0.2812406534 + 1.234872424*I, y
= 0.7018735689 + 0.8796971979*I]}

To solve linear systems numerically, use the numeric::linsolve command. For
example, solve the following system symbolically and numerically:
linsolve([x = y - 1, x + y = 5/2], [x, y]); numeric::linsolve([x = y - 1, x + y =
5/2], [x, y])[x = 3/4, y = 7/4]

[x = 0.75, y = 1.75]

3-76

Solve Equations Numerically

Solve Arbitrary Algebraic Equations and Systems
For nonpolynomial equations, there is no general method of finding all the
solutions numerically. When you solve a nonpolynomial equation or a system
numerically, and the solutions exist, the solver returns only one solution:
numeric::solve(sin(1/x) = x, x){-0.00884125012}

This equation obviously has more than one solution:
plot(sin(1/x), x, x = -1..1)

To get more real solutions of a single equation containing one variable, call
the numeric solver with the option AllRealRoots. The AllRealRoots option

3-77

3 Mathematics

does not guarantee that the solver finds all existing real roots. For example,
the option helps to find additional solutions for the equation:
numeric::solve(sin(1/x) = x, x, AllRealRoots) Warning: Problem in isolating
search intervals. Some roots might be lost. [numeric::allRealRoots]
{-0.8975394613, -0.3606716807, -0.1553007909, -0.1073278873,
-0.07907931072, -0.06392228125, -0.05290310069, -0.0455672924,
-0.03972592668, -0.03179879686, -0.0289615375, -0.01988649969,
-0.01591146474, -0.007402961185, -0.00151575788, 0.00151575788,
0.007402961185, 0.01591146474, 0.01988649969, 0.0289615375,
0.03179879686, 0.03972592668, 0.0455672924, 0.05290310069,
0.06392228125, 0.07907931072, 0.1073278873, 0.1553007909, 0.3606716807,
0.8975394613}

For a system of nonpolynomial equation, the solver also returns only one
solution. Plotting the equations, you see that the system has more than one
solution:
numeric::solve([sin(x) = y^2 - 1, cos(x) = y], [x, y]); plot(sin(x) = y^2 - 1, cos(x)
= y){[x = -1.570796327, y = 0.0000000002599318689]}

3-78

Solve Equations Numerically

The AllRealRoots option does not work for systems:
numeric::solve([sin(x) = y^2 - 1, cos(x) = y], [x, y], AllRealRoots) Error: Only
one equation is allowed with the ’AllRealRoots’ option. [numeric::solve]
To find numerical approximations of other solutions, specify intervals
that contain the solutions. You can use the command numeric::solve that
internally calls numeric::fsolve. However, to speed up your calculations, call
numeric::fsolve directly. Note that numeric::solve returns a set of solutions,
and numeric::fsolve returns a list:
numeric::solve([sin(x) = y^2 - 1, cos(x) = y], [x = 2.5..3.5, y = -1.5..-0.5]);
numeric::fsolve([sin(x) = y^2 - 1, cos(x) = y], [x = 4..5, y = -0.2..0.2]){[x =
3.141592653, y = -1.0]}

[x = 4.71238898, y = -0.0000000003741742246]

3-79

3 Mathematics

The MultiSolutions option also serves to find more than one numeric
approximation. Without this option, the numeric solver looks for a solution
inside the specified interval and disregards any solutions it finds outside of
the interval. When the solver finds the first solution inside the interval, it
stops and does not look for other solutions. If you use MultiSolutions, the
solver returns the solutions found outside of a specified interval.

Note Note If you use the option MultiSolutions and do not specify any
interval, the numeric solver returns only the first solution it finds.

With the MultiSolutions option, the solver also stops after it finds the first
solution inside the specified interval. For example, find several numeric
approximations for the following system:
eqs := [x*sin(10*x) = y^3, y^2 = exp(-2*x/3)]: plot(x*sin(10*x) = y^3, y^2 =
exp(-2*x/3))

3-80

Solve Equations Numerically

Specify the interval where you want to search for the solutions. For example,
consider the interval x = 0..1 that contains two solutions:
plot(x*sin(10*x) = y^3, y^2 = exp(-2*x/3), x = 0..1, y = 0..1)

Call the numeric::solve or numeric::fsolve command with the MultiSolutions
option. Both solvers return one solution that belongs to the specified interval
and one solution outside of the interval:
numeric::fsolve(eqs, [x = 0..1, y = 0..1], MultiSolutions); numeric::solve(eqs,
[x = 0..1, y = 0..1], MultiSolutions)[x = 0.705791548, y = 0.7903622856], [x
= 1.278589279, y = 0.6529880654]

{[x = 1.278589279, y = 0.6529880654], [x = 0.705791548, y = 0.7903622856]}

3-81

3 Mathematics

Specifying the interval that does not contain any solutions can help you find
more approximations. In this case, the solver cannot find the solution inside
the interval and continues searching. Before the solver quits, it can find many
solutions outside the specified interval:
numeric::fsolve(eqs, [x = -10..0, y = 0..1], MultiSolutions)[x = 1.876790003, y =
-0.5349421505], [x = 0.8950751882, y = 0.7420353495], [x = 2.194032234, y =
0.4812617019], [x = 1.58378888, y = -0.5898248642], [x = 0.705791548, y =
0.7903622856], [x = 1.278589279, y = 0.6529880654], [x = 2.204123351, y =
-0.4796455988], [x = 0.9816416007, y = -0.7209295436]

Isolate Numeric Roots
If you know an interval containing the solutions of a polynomial equation,
you can significantly speed up numeric approximations. To find one solution
inside a specified interval, use the numeric::realroot command. The command
returns real solutions and omits the complex ones:
numeric::realroot(1/4*x^4 + x^3 + x + 1 = 0, x = -5..0)-4.174547488

You also can specify an interval and search for all subintervals that can
contain real roots. The numeric::realroots command returns a complete list
of such subintervals:
numeric::realroots(1/4*x^4 + x^3 + x + 1 = 0, x = -5..0)[[-4.1875, -4.15625],
[-0.7109375, -0.70703125]]

If the equation you solve is polynomial, each subinterval contains exactly one
root. For nonpolynomial equations, numeric::realroots can return subintervals

3-82

Solve Equations Numerically

that do not contain any roots. numeric::realroots guarantees that the search
interval does not contain any real roots outside the returned subintervals.

Solve Differential Equations and Systems
There is no general way to solve an arbitrary second- or higher-order ordinary
differential equation (ODE). Often, such an equation does not have a symbolic
solution. In some cases, the solution exists, but it can be presented only by
special functions. For example, the solution of the following second-order
ODE includes the error function erf:
o:=ode({y’’(t) = t*y’(t), y(0) = 0, y’(0) = 1/3}, y(t)):
ode::solve(o){-(sqrt(2)*sqrt(PI)*erf((sqrt(2)*t*I)/2)*I)/6}

Suppose, you do not need an exact symbolic solution, but you want to
approximate the solution for several values of the parameter t. For numeric
approximations of the solutions of ODEs, MuPAD provides two functions:

• numeric::odesolve returns a numeric approximation of the solution at a
particular point.

• numeric::odesolve2 returns a function representing a numeric
approximation of the solution.

Both functions accept either a first-order ODE or a system of first-order
ODEs. To solve a higher-order equation, convert it to a system of the
first-order equations. For example, represent the second-order ODE you
solved symbolically as a system of two first-order equations: y’ = z, z’ = t*z,

y(0) = 0, z(0) = 1/3 . The solution
vector for this system is Y = [y, z].

Approximate at Particular Points
The function numeric::odesolve requires the system of first-order ODEs
(dynamic system) to be represented by a procedure:
f := proc(t, Y) begin [Y[2], t*Y[2]] end_proc‘proc f(t, Y) ... end‘

3-83

3 Mathematics

The second parameter of numeric::odesolve is the range over which you want
to solve an ODE. The third parameter is a list of initial conditions (y(0) = 0,

z(0) = 1/3). Approximate the solutions y(t) for t = 1, t

= 3, and t = 1/127 :
numeric::odesolve(f, 0..1, [0, 1/3]); numeric::odesolve(f, 0..3, [0, 1/3]);
numeric::odesolve(f, 0..1/127, [0, 1/3])[0.3983192206, 0.5495737569]

[11.79725153, 30.00571043]

[0.002624699038, 0.3333436668]

MuPAD also offers an alternate way to generate parameters for the ODE
numeric solvers:

1 Define your initial value problem as a list or a set:
IVP := {y’’(t) = t*y’(t), y(0) = 0, y’(0) = 1/3}:

2 Define a set of fields over which you want to get a solution:
fields := [y(t), y’(t)]:

3 Convert the initial value problem and the fields into a procedure acceptable
by numeric::odesolve. The function numeric::ode2vectorfield generates the
required procedure:
[ODE, t0, Y0] := [numeric::ode2vectorfield(IVP, fields)][‘proc ODE(t, Y) ...
end‘, 0, [0, 1/3]]

3-84

Solve Equations Numerically

Now call numeric::odesolve to approximate the solution at particular values
of t:
numeric::odesolve(ODE, t0..1, Y0)[0.3983192206, 0.5495737569]

Represent Numeric Approximations as Functions
The function numeric::odesolve2 also requires the system of first-order ODEs
(dynamic system) to be represented by a procedure. To generate parameters
for numeric::odesolve2, use the following steps:

1 Define your initial value problem as a list or a set:
IVP := {y’’(t) = t*y’(t), y(0) = 0, y’(0) = 1/3}:

2 Define a set of fields over which you want to get a solution:
fields := [y(t), y’(t)]:

3 Convert the initial value problem and the fields into a procedure acceptable
by numeric::odesolve2. The function numeric::ode2vectorfield generates the
required procedure:
ODE := numeric::ode2vectorfield(IVP, fields)‘proc(t, Y) ... end‘, 0, [0, 1/3]

Now call numeric::odesolve2 to approximate the solution:
numApprox := numeric::odesolve2(ODE)‘proc numApprox(t) ... end‘

Using the function generated by numeric::odesolve2, find the numeric
approximation at any point. For example, find the numeric solutions for the

3-85

3 Mathematics

values t = 1, t = 3, and t = 1/127 . You get the same results as with
numeric::odesolve, but the syntax is shorter:
numApprox(1); numApprox(3); numApprox(1/127)[0.3983192206,
0.5495737569]

[11.79725153, 30.00571043]

[0.002624699038, 0.3333436668]

Plot the numeric solution using the function generated by numeric::odesolve2.
The function numApprox returns a list [y(t), y'(t)]. When plotting the
solution y(t), use brackets to extract the first entry of the solution list:
plotfunc2d(numApprox(t)[1], t = 0..3)

3-86

Solve Equations Numerically

Use numeric::odesolve2 to find numeric approximations for the following
system of ODEs:
IVP := {x’(t) = -y(t) + x(t)^2, y’(t) = 10*x(t) - y(t)^2, x(0) = 1, y(0) = 1}: fields
:= [x(t), y(t)]: ODE := numeric::ode2vectorfield(IVP, fields): numApprox :=
numeric::odesolve2(ODE)‘proc numApprox(t) ... end‘

Plot the numeric solutions for x(t) and y(t) in one graph:
plotfunc2d(numApprox(t)[1], numApprox(t)[2], t = 0..20)

3-87

3 Mathematics

Use the plot::Curve2d plotting function to generate a parametric plot of the
numeric solution:
curve := plot::Curve2d([numApprox(t)[1], numApprox(t)[2]], t = 0..20):
plot(curve)

3-88

Solve Equations Numerically

Alternatively, use plot::Ode2d or plot::Ode3d.

3-89

3 Mathematics

Use General Simplification Functions

In this section...

“When to Use General Simplifiers” on page 3-90

“Choose simplify or Simplify” on page 3-91

“Use Options to Control Simplification Algorithms” on page 3-91

When to Use General Simplifiers
Simplification of mathematical expression is not a clearly defined subject.
There is no universal idea as to which form of an expression is simplest. The
form of a mathematical expression that is simplest for one problem turns
out to be complicated or even unsuitable for another problem. For example,
the following two mathematical expressions present the same polynomial in
different forms:

(x + 1)(x - 2)(x + 3)(x - 4),

x4 - 2x3 - 13x2 + 14x + 24.

The first form clearly shows the roots of this polynomial. This form is simpler
for working with the roots. The second form serves best when you want to the
coefficients of the polynomial.

If the problem you want to solve requires a particular form of an expression,
the best approach is to choose the appropriate simplification function. See
Choosing Simplification Functions.

Besides specific simplifiers, MuPAD offers two general ones:

• simplify searches for a simpler form by rewriting the terms of an
expression. This function uses an internal set of rules for rewriting an
expression. You cannot modify this set of rules.

• Simplify performs more extensive search for a simple form of an expression.
For some expressions, this function can be slower, but more flexible and
more powerful than simplify. Simplify uses a wider set of rules to search
for a simpler form of an expression. Simplify lets you extend the set of

3-90

Use General Simplification Functions

simplification rules and also accepts a number of options allowing you more
control over the simplification algorithm.

If you do not need a particular form of expressions (expanded, factored,
or expressed in particular terms), use simplify and Simplify to shorten
mathematical expressions. For example, use these functions to find a shorter
form for a final result. The general simplifiers also can help you in verifying
the result.

Choose simplify or Simplify
Use the simplify command to simplify elementary expressions such as:
simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1));
simplify(cos(x)^(-2) - tan(x)^2)x^12 - 1

1

For elementary expressions, simplify is an effective and fast simplifier. For
more complicated expressions, simplify might be less effective. The returned
form of the following expression can be shortened further. Simplify returns
a simpler form:
f := (cos(x)^2 - sin(x)^2)/(sin(x)*cos(x)): simplify(f), Simplify(f)(2*cos(x)^2 -
1)/(cos(x)*sin(x)), 2*cot(2*x)

Use Options to Control Simplification Algorithms
By default, in order to find the simplest form of an expression, the Simplify
function takes 100 internal simplification steps. This function can simplify
some expressions further by taking more simplifications steps:

3-91

3 Mathematics

F := exp((cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/(exp(2*x) - 1)):
Simplify(F)exp(-(sin(4*x) - sin(4*x)*exp(x))/(2*exp(x) + 2))

You can change the number of internal simplification steps through the option
Steps. This option is not available for simplify:
Simplify(F, Steps = 250)exp((sin(4*x)*(exp(x) - 1))/(2*(exp(x) + 1)))

By default, the general simplifiers return only one form of an expression—the
form that MuPAD considers to be simplest. To return all forms found by
Simplify, use the option All:
Simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1),
All)[x^12 - 1, (x^2 + 1)*(x - 1)*(x + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1)*(x^2 + x +
1), (x - 1)*(x + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1)*(x^2 + x + 1) + x^2*(x - 1)*(x +
1)*(x^2 - x + 1)*(x^4 - x^2 + 1)*(x^2 + x + 1)]

While transforming an expression, MuPAD simplifiers keep all forms of an
expression mathematically equivalent to the initial expression. For example,
the simplifiers do not combine logarithms. The rule for combining logarithms
does not hold for arbitrary complex arguments and, therefore, combining
logarithms can be incorrect for some parameters:
Simplify(ln(x + 2) - ln(x^2 + 4*x + 4))ln(x + 2) - ln((x + 2)^2)

3-92

Use General Simplification Functions

Potential division by zero is the only exception of this rule:
Simplify(x*(x + 1)/x)x + 1

To apply more simplification rules that are not generally correct, but which
can return simpler results, use the option IgnoreAnalyticConstraints. This
option is available for both simplify and Simplify. For example, simplifying
an expression with IgnoreAnalyticConstraints, you get the result with
combined logarithms:
Simplify(ln(x + 2) - ln(x^2 + 4*x + 4), IgnoreAnalyticConstraints)-ln(x + 2)

For the list of all options available for the general simplifiers, see simplify
and Simplify.

3-93

3 Mathematics

Choose Simplification Functions

In this section...

“Collect Terms with Same Powers” on page 3-95

“Combine Terms of Same Algebraic Structures” on page 3-96

“Expand Expressions” on page 3-97

“Factor Expressions” on page 3-98

“Compute Normal Forms of Expressions” on page 3-99

“Compute Partial Fraction Decompositions of Expressions” on page 3-100

“Simplify Radicals in Arithmetic Expressions” on page 3-101

“Extract Real and Imaginary Parts of Complex Expressions” on page 3-101

“Rewrite Expressions in Terms of Other Functions” on page 3-102

Most mathematical expressions can be represented in different, but
mathematically equivalent forms. Some of these forms might look simpler, for
example, they can be visibly shorter. However, you might prefer other forms
of the same expression for numeric computations. There is no general rule
as to which form of an expression is the simplest. When solving a particular
problem, you can choose the simplest form of an expression for this problem.

Besides the general simplification functions simplify and Simplify, MuPAD
provides a set of functions for transforming mathematical expressions
to particular forms. The following table helps you choose the function
for transforming your expression to the appropriate form. To see a short
description of a function and a set of examples, click the link in the left
column. To see the detailed help page for a function, click the function name
in the right column.

Type of Transformation Function

Collect terms with the same powers collect

Combine terms of the same algebraic structure combine

Expand an expression expand

Factor an expression factor

3-94

Choose Simplification Functions

Type of Transformation Function

Normalize an expression normal

Compute a partial fraction decomposition partfrac

Simplify radicals in an expression radsimp

Separate the real and imaginary parts of a
complex expression

rectform

Rewrite an expression in terms of a specified
target function

rewrite

Collect Terms with Same Powers
If a mathematical expression contains terms with the same powers of
a specified variable or expression, the collect function reorganizes the
expression grouping such terms. When calling collect, specify the variables
or expressions that the function should consider as unknowns. The collect
function regards an original expression as a polynomial in the specified
unknowns and groups the coefficients with equal powers:
collect(x*y^4 + x*z + 2*x^3 + x^2*y*z + 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z,
x)(3*y^4*z^2 + 2)*x^3 + (y*z)*x^2 + (y^4 + 5*z*y + z)*x + y*z^2

collect can consider an expression as the specified unknown. For example,
group the terms of the following trigonometric expression with the equal
powers of sin(x) and cos(x):
f := cos(x)^4*sin(x) + cos(x)^2*sin(x)^3 + cos(x)^2*sin(x)^2 - sin(x)^4: collect(f,
sin(x))- sin(x)^4 + cos(x)^2*sin(x)^3 + cos(x)^2*sin(x)^2 + cos(x)^4*sin(x)

collect(f, cos(x))sin(x)*cos(x)^4 + (sin(x)^3 + sin(x)^2)*cos(x)^2 - sin(x)^4

3-95

3 Mathematics

The collect function also can accept several unknowns for collecting terms. If
you have several unknowns, pass them to collect as a list:
collect(a^2*sin(x) - cos(x)^2*sin(x)^3 + cos(x)^2 + a - a^2*sin(x)^4, [a,
cos(x)])(sin(x) - sin(x)^4)*a^2 + a + (1 - sin(x)^3)*cos(x)^2

Combine Terms of Same Algebraic Structures
MuPAD also provides a function for combining subexpressions of an original
expression. The combine function uses mathematical identities for the
functions you indicate. For example, combine the trigonometric expression:
combine(2*sin(x)*cos(x), sincos)sin(2*x)

If you do not specify a target function, combine uses the identities for powers
wherever these identities are valid:

• abac = ab + c

• acbc = (ab)c, if c is an integer

• (ab)c = abc, if c is an integer

For example, by default the function combines the following square roots:
combine(sqrt(2)*sqrt(x))sqrt(2*x)

The function does not combine these square roots because the identity is not
valid for negative values of variables:
combine(sqrt(x)*sqrt(y))sqrt(x)*sqrt(y)

3-96

Choose Simplification Functions

As target functions, combine accepts arctan, exp, gamma, ln, sincos, and
other functions. For the complete list of target functions, see the combine
help page.

Expand Expressions
For elementary expressions, the expand function transforms the original
expression by multiplying sums of products:
expand((x + 1)*(x + 2)*(x + 3))x^3 + 6*x^2 + 11*x + 6

expand also uses mathematical identities between the functions:
expand(sin(5*x))16*sin(x)*cos(x)^4 - 12*sin(x)*cos(x)^2 + sin(x)

expand works recursively for all subexpressions:
expand((sin(3*x) + 1)*(cos(2*x) - 1))2*sin(x) + 2*cos(x)^2 - 10*cos(x)^2*sin(x)
+ 8*cos(x)^4*sin(x) - 2

To prevent the expansion of particular subexpressions, pass these
subexpressions to expand as arguments:
expand((sin(3*x) + 1)*(cos(2*x) - 1), sin(3*x))2*cos(x)^2 - 2*sin(3*x) +
2*sin(3*x)*cos(x)^2 - 2

To prevent the expansion of all trigonometric subexpressions in this example,
use the option ArithmeticOnly:
expand((sin(3*x) + 1)*(cos(2*x) - 1), ArithmeticOnly)cos(2*x) - sin(3*x) +
cos(2*x)*sin(3*x) - 1

3-97

3 Mathematics

Factor Expressions
To present an expression as a product of sums, try the factor function. The
factored form of the following polynomial is visibly shorter than the original
one. The factored form also shows that this polynomial has only one root
x = -5:
factor(x^10 + 50*x^9 + 1125*x^8 + 15000*x^7 + 131250*x^6 + 787500*x^5
+ 3281250*x^4 + 9375000*x^3 + 17578125*x^2 + 19531250*x + 9765625)(x
+ 5)^10

For sums of rational expressions, factor first computes a common denominator,
and then factors both the numerator and denominator:
f := (x^3 + 3*y^2)/(x^2 - y^2) + 3: f = factor(f)(x^3 + 3*y^2)/(x^2 - y^2) + 3 =
(x^2*(x + 3))/((x - y)*(x + y))

The function also can factor expressions other than polynomials and rational
functions. Internally, MuPAD converts such expressions into polynomials
or rational function by substituting subexpressions with identifiers. After
factoring the expression with temporary identifiers, MuPAD restores the
original subexpressions:
factor((ln(x)^2 - 1)/(cos(x)^2 - sin(x)^2))((ln(x) - 1)*(ln(x) + 1))/((cos(x) -
sin(x))*(cos(x) + sin(x)))

3-98

Choose Simplification Functions

By default, factor searches for polynomial factors with rational numbers. The

function does not factor the expression into a product containing sqrt(2) :
factor(x^2 - 2)x^2 - 2

To add the constant sqrt(2) to the numbers used in factoring, use the
option Adjoin:
factor(x^2 - 2, Adjoin = [sqrt(2)])(x - sqrt(2))*(x + sqrt(2))

Compute Normal Forms of Expressions
The normal function represents the original rational expression as a single
rational term with expanded numerator and denominator. The greatest
common divisor of the numerator and denominator of the returned expression
is 1:
f := (x^3 + 3*y^2)/(x^2 - y^2) + 3: f = normal(f)(x^3 + 3*y^2)/(x^2 - y^2) + 3
= (x^3 + 3*x^2)/(x^2 - y^2)

normal cancels common factors that appear in numerator and denominator:
f := x^2/(x + y) - y^2/(x + y): f = normal(f)x^2/(x + y) - y^2/(x + y) = x - y

The normal function also handles expressions other than polynomials and
rational functions. Internally, MuPAD converts such expressions into

3-99

3 Mathematics

polynomials or rational functions by substituting subexpressions with
identifiers. After normalizing the expression with temporary identifiers,
MuPAD restores the original subexpressions:
f := (exp(2*x) - exp(2*y))/(exp(3*x) - exp(3*y)): f = normal(f)(exp(2*x) -
exp(2*y))/(exp(3*x) - exp(3*y)) = (exp(x) + exp(y))/(exp(2*x) + exp(2*y) +
exp(x)*exp(y))

Compute Partial Fraction Decompositions of
Expressions
The partfrac function returns a rational expression in the form of a sum
of a polynomial and rational terms. In each rational term, the degree of
the numerator is smaller than the degree of the denominator. For some
expressions, partfrac returns visibly simpler forms, for example:
partfrac((x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247)/(x^6
+ 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108), x)1/(x + 1) + 1/(x +
2)^2 + 1/(x + 3)^3 + 1

The denominators in rational terms represent the factored common
denominator of the original expression:
factor(x^6 + 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108)(x + 1)*(x
+ 2)^2*(x + 3)^3

3-100

Choose Simplification Functions

Simplify Radicals in Arithmetic Expressions
As an alternative to the general simplifiers simplify and Simplify, use the
radsimp function to simplify arithmetic expressions involving square roots or
other radicals. For example, simplify the following numeric expression:
f := (2*3^(1/4) + 3^(1/2))^(1/2); radsimp(f)sqrt(sqrt(3) + 2*3^(1/4))

3^(1/8)*sqrt(3^(1/4) + 2)

Extract Real and Imaginary Parts of Complex
Expressions
When working with complex numbers, you might need to separate the
real and imaginary part of a symbolic expression. To extract the real and
imaginary part of a complex number, you use the Re and Im functions. For
symbolic expressions, these functions return:
Re(tan(x)), Im(tan(x))Re(tan(x)), Im(tan(x))

Use the rectform function to split a symbolic expression into its real and
imaginary parts:
y := rectform(tan(x))sin(2*Re(x))/(cosh(2*Im(x)) + cos(2*Re(x))) +
(sinh(2*Im(x))/(cosh(2*Im(x)) + cos(2*Re(x))))*I

To extract the real and imaginary parts of y, use the Re and Im functions:
Re(y); Im(y)sin(2*Re(x))/(cosh(2*Im(x)) + cos(2*Re(x)))

3-101

3 Mathematics

sinh(2*Im(x))/(cosh(2*Im(x)) + cos(2*Re(x)))

Rewrite Expressions in Terms of Other Functions
To present an expression in terms of a particular function, use the rewrite
command. The command uses mathematical identities between functions.
For example, rewrite an expression containing trigonometric functions in
terms of a particular trigonometric function:
sin(x) = rewrite(sin(x), tan); cos(x) = rewrite(cos(x), tan); sin(2*x) + cos(3*x)^2
= rewrite(sin(2*x) + cos(3*x)^2, tan)sin(x) = (2*tan(x/2))/(tan(x/2)^2 + 1)

cos(x) = -(tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)

cos(3*x)^2 + sin(2*x) = (tan((3*x)/2)^2 - 1)^2/(tan((3*x)/2)^2 + 1)^2 +
(2*tan(x))/(tan(x)^2 + 1)

3-102

Choose Simplification Functions

Use rewrite to express the trigonometric and hyperbolic functions in terms
of the exponential function:
sin(x) = rewrite(sin(x), exp); cos(x) = rewrite(cos(x), exp); sinh(x) =
rewrite(sinh(x), exp); cosh(x) = rewrite(cosh(x), exp)sin(x) = (exp(-x*I)*I)/2 -
(exp(x*I)*I)/2

cos(x) = exp(-x*I)/2 + exp(x*I)/2

sinh(x) = exp(x)/2 - exp(-x)/2

cosh(x) = exp(-x)/2 + exp(x)/2

The command also expresses inverse hyperbolic functions in terms of
logarithms:
arcsinh(x) = rewrite(arcsinh(x), ln); arccosh(x) = rewrite(arccosh(x),
ln)arcsinh(x) = ln(x + sqrt(x^2 + 1))

arccosh(x) = ln(x + sqrt(x^2 - 1))

3-103

3 Mathematics

As target functions, rewrite accepts: direct and inverse trigonometric
functions, direct and inverse hyperbolic functions, diff, D, erf, exp, fact,
gamma, harmonic, piecewise, and more. See the rewrite help page for the
complete list of target functions.

3-104

If You Want to Simplify Results Further

If You Want to Simplify Results Further

In this section...

“Increase the Number of Simplification Steps” on page 3-105

“Apply Several Simplification Functions” on page 3-106

“Use Options” on page 3-107

“Use Assumptions” on page 3-108

Increase the Number of Simplification Steps
When simplifying a complicated expression, MuPAD can return results that
would benefit from further simplifications. Suppose you want to simplify the
following expression:
f := (-(4*PI*3^(1/2))/3 + PI*(-1)^(3/4)*2^(1/2)*3^(1/2)*(- (2*I)/3
- 2/3))*(cos(3*arccos(x)))-cos(3*arccos(x))*((4*PI*sqrt(3))/3 +
PI*(-1)^(3/4)*sqrt(2)*sqrt(3)*(2/3 + (2/3)*I))

First, try calling the general simplifier simplify:
simplify(f)-(2*PI*sqrt(3)*cos(3*arccos(x))*(2 + (-1)^(3/4)*sqrt(2)*(1 + I)))/3

The returned expression has an even shorter representation. To simplify this
result further, call the Simplify command:
Simplify(f)-(2*PI*sqrt(3)*x*(2 + (-1)^(3/4)*sqrt(2)*(1 + I))*(4*x^2 - 3))/3

3-105

3 Mathematics

You can simplify the result even more by increasing the number of steps:
Simplify(f, Steps = 150)0

Apply Several Simplification Functions
To transform a very complicated expression or an expression that should
appear in a particular form, you might need to apply several simplification
functions. When you transform an expression to a particular form by using a
special transformation function, the function can return can return results
that are not fully simplified. Suppose you want to rewrite the trigonometric
expression in terms of exponential functions. The rewrite command replaces
the sin and cos functions by exponential functions, but does not simplify
the result:
f := rewrite(sin(x)/cos(x), exp)((exp(-x*I)*I)/2 - (exp(x*I)*I)/2)/(exp(-x*I)/2 +
exp(x*I)/2)

To simplify the resulting expression, call the simplify command:
simplify(f)-(exp(2*x*I)*I - I)/(exp(2*x*I) + 1)

The more powerful Simplify function converts this expression back to its
trigonometric form:
Simplify(f)tan(x)

3-106

If You Want to Simplify Results Further

Use Options
When transforming expressions, the MuPAD simplifiers apply the rules valid
for the entire complex plane. For example, try to simplify this expression
containing logarithms:
h := ln(x + 1)/2 - ln(1 - 1/x)/2 - ln(1 - x)/2 + ln(1/x + 1)/2ln(x + 1)/2 - ln(1 - 1/x)/2 -
ln(1 - x)/2 + ln(1/x + 1)/2

By default, the simplifier does not combine logarithms because this operation
is only valid for particular real numbers. For complex numbers, combining
logarithms is not generally valid:
Simplify(h)ln(x + 1)/2 - ln(1 - 1/x)/2 - ln(1 - x)/2 + ln(1/x + 1)/2

If you solve a problem that does not require application of strict mathematical
rules, try using the IgnoreAnalyticConstraints option. With this option,
the simplifier uses a set of mathematical rules that are not generally
correct. For example, if you use the IgnoreAnalyticConstraints option,
the simplifier returns:
Simplify(h, IgnoreAnalyticConstraints)ln(x + 1) - ln(x - 1)/2 - ln(1 - x)/2

The results obtained with the option IgnoreAnalyticConstraints are most
useful for many in engineering and physics problems. Note that when you use

3-107

3 Mathematics

this option, the simplifiers do not guarantee the equivalence of the original
and simplified expressions for the entire complex plane.

Use Assumptions
When transforming an expression, the simplification functions apply the
rules valid for the entire plane of complex numbers. By default, MuPAD does
not assume any additional mathematical properties on the identifiers. For

example, the identity ln(exp(x)) = x is not generally valid for
all complex numbers:
simplify(ln(exp(x)))ln(exp(x))

When you work with real numbers, the simplification functions can also use
the rules valid for real numbers. Use the assume or assuming command to
specify that a variable x represents a real number. The assume command
creates a permanent assumption. The assuming command creates a
temporary assumption, which is valid during a single command. The
simplifier applies the appropriate rule and returns the expected result:
simplify(ln(exp(x))) assuming x in R_x

When you simplify the following expression, the returned expression is
shorter than the original one. However, you can further simplify the returned
expression:
f := ln(- 2*sin(-(sin(x)*I)/2)^2 + sin(-sin(x)*I)*I + 1); Simplify(f)ln(-
2*sin((sin(x)*I)/2)^2 - sin(sin(x)*I)*I + 1)

ln(2*sinh(sin(x)/2)^2 + sinh(sin(x)) + 1)

3-108

If You Want to Simplify Results Further

Increasing the number of steps simplifies the expression further:
Simplify(f, Steps = 300)ln(cosh(sin(x)) + sinh(sin(x)))

If you want to get a simplified result for real x, assume that x is real:
assume(x, Type::Real); Simplify(f, Steps = 300)sin(x)

To remove an assumption, use the unassume command:
unassume(x); is(x, Type::Real)UNKNOWN

When assuming any additional mathematical property for a variable (such
as assuming that x is real), make sure that your problem does not require
solutions to be valid for all complex numbers. Be especially careful if your
initial expression contains complex numbers.

For more information about assumptions, see “Properties and Assumptions”.

3-109

3 Mathematics

Convert Expressions Involving Special Functions

In this section...

“Simplify Special Functions Automatically” on page 3-110

“Use General Simplifiers to Reduce Special Functions” on page 3-111

“Expand Expressions Involving Special Functions” on page 3-112

“Verify Solutions Involving Special Functions” on page 3-113

Simplify Special Functions Automatically
MuPAD provides many special functions commonly used in engineering and
science. MuPAD uses standard mathematical notations for special functions.
If you do not recognize a notation, see Mathematical Notations Uses in
Typeset Mode.

Particular parameter choices can simplify special functions. Often MuPAD
handles such simplifications automatically. For example, the following
parameters reduce hypergeometric functions to elementary functions:
hypergeom([], [], z); hypergeom([1], [], z); hypergeom([a], [], z)exp(z)

-1/(z - 1)

1/(1 - z)^a

3-110

Convert Expressions Involving Special Functions

Use General Simplifiers to Reduce Special Functions
MuPAD does not automatically simplify some functions. For example, it does
not automatically simplify the Meijer G special function:
meijerG([[], []], [[1], []], z)meijerG(1, 0, [], [1], z)

The general simplification functions, simplify and Simplify, represent this
expression in terms of elementary functions:
simplify(meijerG([[], []], [[1], []], z))z*exp(-z)

MuPAD also does not use automatic simplifications for many expressions
involving special functions. Suppose you get an expression containing the
Fresnel sine integral function:
2*fresnelS(z) + fresnelS(-z)fresnelS(-z) + 2*fresnelS(z)

To apply the reflection rule fresnelS(-z) = -fresnelS(z) and simplify this
expression, explicitly call one of the general simplifiers:
simplify(2*fresnelS(z) + fresnelS(-z))fresnelS(z)

Particular values of parameters can reduce more general special functions
to expressions containing simpler special functions. For example, reduce
meijerG to the hypergeometric functions:
Simplify(meijerG([[1/3, 1/3, 3/2], []], [[0], [-2/3, 4/3]],
z))3*sqrt(PI)*hypergeom([-1/2, 2/3], [5/3], -z) - 2*sqrt(PI)*sqrt(z + 1)

3-111

3 Mathematics

The following choice of parameters expresses meijerG in terms of the Bessel
functions:
simplify(meijerG([[], []], [[1], [1]], z))z*besselJ(0, 2*sqrt(z))

Expand Expressions Involving Special Functions
MuPAD supports expansions of expressions containing special functions. The
resulting expressions can involve the original or additional special functions,
or both. For example, the expand command expresses the beta function by
gamma functions:
reset()beta(x + 1, y) = expand(beta(x + 1, y))beta(y, x + 1) =
(x*gamma(x)*gamma(y))/(x*gamma(x + y) + y*gamma(x + y))

When you expand the gamma function, MuPAD expresses it in terms of
gamma functions:
gamma(5*x + 1) = expand(gamma(5*x + 1))gamma(5*x + 1) =
(sqrt(5)*5^(5*x)*x*gamma(x + 1/5)*gamma(x + 2/5)*gamma(x + 3/5)*gamma(x
+ 4/5)*gamma(x))/(4*PI^2)

3-112

Convert Expressions Involving Special Functions

Verify Solutions Involving Special Functions
When solving equations (especially ordinary differential equations), you
often get the results in terms of special functions. For example, consider
the following differential equation:
reset()eq := diff(y(x), x, x) - x^3*y(x) = 0diff(y(x), x, x) - x^3*y(x) = 0

For this ODE, the solver returns the result in terms of the Bessel functions:
S := solve(ode(eq, y(x))){C2*sqrt(x)*besselI(1/5, (2*x^(5/2))/5) +
C3*sqrt(x)*besselK(1/5, (2*x^(5/2))/5)}

To verify correctness of the returned solution, try substituting it into the
original equation by using evalAt or its shortcut |. You get the following
long and complicated result that still contains the Bessel special functions.
MuPAD does not automatically simplify this result:
eq | y(x) = S[1]C2*sqrt(x)*((besselI(1/5, (2*x^(5/2))/5)/(2*x) -
x^(3/2)*besselI(-4/5, (2*x^(5/2))/5))/(2*x) - x^(3/2)*((2*besselI(-4/5,
(2*x^(5/2))/5))/x - x^(3/2)*besselI(1/5, (2*x^(5/2))/5)) + besselI(1/5,
(2*x^(5/2))/5)/(2*x^2) + (3*sqrt(x)*besselI(-4/5, (2*x^(5/2))/5))/2)
- (C2*besselI(1/5, (2*x^(5/2))/5))/(4*x^(3/2)) - (C3*besselK(1/5,
(2*x^(5/2))/5))/(4*x^(3/2)) - (C2*(besselI(1/5, (2*x^(5/2))/5)/(2*x)
- x^(3/2)*besselI(-4/5, (2*x^(5/2))/5)))/sqrt(x) - (C3*(besselK(1/5,
(2*x^(5/2))/5)/(2*x) + x^(3/2)*besselK(-4/5, (2*x^(5/2))/5)))/sqrt(x) -
x^3*(C2*sqrt(x)*besselI(1/5, (2*x^(5/2))/5) + C3*sqrt(x)*besselK(1/5,
(2*x^(5/2))/5)) + C3*sqrt(x)*((besselK(1/5, (2*x^(5/2))/5)/(2*x) +
x^(3/2)*besselK(-4/5, (2*x^(5/2))/5))/(2*x) + x^(3/2)*((2*besselK(-4/5,
(2*x^(5/2))/5))/x + x^(3/2)*besselK(1/5, (2*x^(5/2))/5)) + besselK(1/5,
(2*x^(5/2))/5)/(2*x^2) - (3*sqrt(x)*besselK(-4/5, (2*x^(5/2))/5))/2) = 0

3-113

3 Mathematics

Simplifying this expression, you get the identity that proves the correctness of
the solution:
simplify(eq | y(x) = S[1])0 = 0

3-114

Convert Expressions Involving Special Functions

The testeq command serves best for verifying correctness of the solutions. The
command automatically simplifies expressions on both sides of the equation:
testeq(eq | y(x) = S[1])TRUE

For more information see Testing Results.

3-115

3 Mathematics

When to Use Assumptions
By default, MuPAD assumes that all symbolic parameters and variables
represent complex numbers. If you perform computations that involve
unknowns with natural restrictions, you can set assumptions on these
unknowns. For example, when solving an equation where one of the
parameters represents real numbers, request the solver to consider this
parameter as a real number. Use assumptions to limit the number of solutions
to those necessary and to improve code performance.

When solving an equation, inequality, or a system, you can use assumptions
on parameters of the equation and assumptions on the variables you solve
for. Setting assumptions on parameters and variables affects performance of
the solver in different ways:

• Assumptions on parameters tend to narrow the area in which the
solver tries to find the solutions, thereby improving performance of the
solver. If you can identify mathematical properties of the parameters in
your equation, inequality, or system, use these properties to set as many
assumptions on parameters as possible.

• Assumptions on variables can narrow the returned results. MuPAD
applies assumptions on variables after the solver finds the solutions. The
solver verifies the results against the assumptions and returns only those
solutions that agree with the assumptions. Adding this extra task can slow
down the solver. Use assumptions on variables sparsely.

Alternatively, you can simplify already returned complicated results by using
assumptions. See Using Assumptions.

There are two types of assumptions you can set:

• Permanent assumptions hold true for all calculations MuPAD performs
after you set the assumptions. If you want MuPAD to stop using a
permanent assumption, you must explicitly delete the assumption.
Permanent assumptions serve best when you know that an object holds its
property throughout the solution process. For more information see Using
Permanent Assumptions.

• Temporary assumptions hold true only for the particular evaluation
where you set them. For example, if you use a temporary assumption while

3-116

When to Use Assumptions

solving a single equation, the solver applies this assumption only to solve
this particular equation. Using temporary assumptions to solve problems
works best when an object holds its property only during particular
calculations. Temporary assumptions also help you to keep the object name
free and reuse it during the solution process. For more information see
Using Temporary Assumptions.

3-117

3 Mathematics

Use Permanent Assumptions

In this section...

“Set Permanent Assumptions” on page 3-118

“Add Permanent Assumptions” on page 3-120

“Clear Permanent Assumptions” on page 3-122

Set Permanent Assumptions
Permanent assumptions work best for the mathematical properties that hold
true throughout your computations. Suppose, you want to calculate the time
during which a free-falling object drops from the height h. The kinematic
equation for the free fall motion is h = gt2, where g is the free fall acceleration.
Using this equation, calculate the time during which the object falls from a
certain height. Without assumptions, you get the complete solution for all
possible values of parameters including complex values:
t = solve(h = g*t^2/2, t)t = piecewise([g <> 0, {(sqrt(2)*sqrt(h))/sqrt(g),
-(sqrt(2)*sqrt(h))/sqrt(g)}], [g = 0 and h = 0, C_], [g = 0 and h <> 0, {}])

If you do not consider the special case where no gravitational forces exist,
you can safely assume that the gravitational acceleration is positive. This
assumption removes the special zero-gravity cases from the solution:
assume(g > 0); t = solve(h = g*t^2/2, t)t = {(sqrt(2)*sqrt(h))/sqrt(g),
-(sqrt(2)*sqrt(h))/sqrt(g)}

3-118

Use Permanent Assumptions

The variable h in the equation represents the height from which the object
falls. If you do not consider that someone initially throws the object upward
and that the object reflects from the ground, the height h is always positive.
Therefore, you can assume that both gravitational acceleration g and height h
are positive:
assume(g > 0 and h > 0); t = solve(h = g*t^2/2, t)t = {(sqrt(2)*sqrt(h))/sqrt(g),
-(sqrt(2)*sqrt(h))/sqrt(g)}

Assuming that the time of the drop is a positive value, you get the expected
result. When you set assumptions on variables, the solver compares the
obtained solutions with the specified assumptions. This additional task can
slow down the solver:
assume(g > 0 and h > 0 and t > 0); t := solve(h = g*t^2/2,
t){(sqrt(2)*sqrt(h))/sqrt(g)}

The solver returns the solutions as a set, even if the set contains only one
element. To access the elements of a solution set, use square brackets or
the op command:
time = t[1]time = (sqrt(2)*sqrt(h))/sqrt(g)

Clear the variable t for further computations:
delete tIf you set several assumptions for the same object, each new
assumption overwrites the previous one:
assume(h in R_); assume(h <> 0); is(h in R_), is(h <> 0)UNKNOWN, TRUE

3-119

3 Mathematics

If you want to keep the previous assumption while adding a new one, see
Adding Assumptions.

The assume command cannot solve assumptions in the form of equations and
does not assign values to the variables:
assume(g + 5 = 14.8 and 2*t = 14); h = g*t^2/2h = (g*t^2)/2

When you set an assumption in the form of an inequality, both sides of the
inequality must represent real values. Inequalities with complex numbers
are invalid because the field of complex numbers is not an ordered field. For
example, if you try to use the following assumption, MuPAD returns an error:
assume(t > 2*I) Error: Assumptions are inconsistent. [property::_assume] You
can use complex values in an assumption written in the form of an equation:
assume(t = 2*PI*I)

Add Permanent Assumptions
When you set an assumption on an object, MuPAD replaces the previous
assumptions on that object with the new assumption:
assume(x in Z_); assume(x in R_); is(x in Z_), is(x in R_)UNKNOWN, TRUE

To add a new assumption without removing the previous assumptions, use
the assumeAlso command:
assume(x in Z_); assumeAlso(x in R_); is(x in Z_), is(x in R_)TRUE, TRUE

3-120

Use Permanent Assumptions

Also, you can set multiple assumptions in one function call by using the logical
operators. For example, set two assumptions on x:
assume(x in Z_ and x in R_); is(x in Z_), is(x in R_)TRUE, TRUE

When adding assumptions, always check that a new assumption does not
contradict the existing assumption. MuPAD does not guarantee to detect
conflicting assumptions. For example, assume that y is simultaneously
nonzero, real and an imaginary value. Type::Imaginary refers to all complex
numbers lying on the imaginary axis. When you set these assumptions,
MuPAD does not issue any warning and does not error:
assume(y <> 0); assumeAlso(y in R_); assumeAlso(y, Type::Imaginary)

Note Note Do not set conflicting assumptions because they can lead to
unpredictable and inconsistent results.

To check if the assumption still holds true, use the is command. For example,
MuPAD drops the assumption that the variable y represents imaginary
numbers because this assumption conflicts with the combination of the
previous two assumptions:
is(y <> 0), is(y in R_), is(y, Type::Imaginary)TRUE, TRUE, FALSE

If you set conflicting assumptions, the order in which you set them does not
always determine which assumption MuPAD accepts:
assume(y <> 0); assumeAlso(y, Type::Imaginary); assumeAlso(y in Z_); is(y <>
0), is(y, Type::Imaginary), is(y in Z_)TRUE, FALSE, TRUE

3-121

3 Mathematics

Clear Permanent Assumptions
Permanent assumptions hold for all further calculations. Before using a
parameter in other calculations, check which properties MuPAD assumes to
be valid for this parameter. The property::showprops command returns all
assumptions specified for the parameter:
assume(g in R_); assume(h in Z_); assume(t > 0); property::showprops(g),
property::showprops(h), property::showprops(t)[g in R_], [h in Z_], [0 < t]

The unassume command clears a particular object from all assumptions:
unassume(g); unassume(h); unassume(t); property::showprops(g),
property::showprops(h), property::showprops(t)[], [], []

To delete the value of a parameter and clear all assumptions set for this
parameter, use the delete command:

delete g, h, tFor example, assign the value g*t^2/2 to the variable h
and assume that h > 0:
h := g*t^2/2: assume(g > 0 and h > 0); property::showprops(h); h[0 < g, 0
< (g*t^2)/2]

(g*t^2)/2

The unassume command clears the assumption, but does not remove the
value of the variable:
unassume(h > 0); property::showprops(h); h[]

3-122

Use Permanent Assumptions

(g*t^2)/2

The delete command clears the assumption and the value:
delete h; property::showprops(h); h[]

h

3-123

3 Mathematics

Use Temporary Assumptions

In this section...

“Create Temporary Assumptions” on page 3-124

“Assign Temporary Values to Parameters” on page 3-125

“Interactions Between Temporary and Permanent Assumptions” on page
3-127

“Use Temporary Assumptions on Top of Permanent Assumptions” on page
3-127

Create Temporary Assumptions
Use temporary assumptions to specify that an object holds mathematical
properties for a particular calculation. Temporary assumptions also help
you narrow a general solution and get specific solutions. For example, the
following equation describes linear motion with constant acceleration: r = r_0

+ v_0*t + a*t^2/2 . Here, r is the distance the object
travels, r0 is the initial distance, v0 is the initial velocity, a is the constant
acceleration, and t is the time of travel. If you know all other parameters and
want to calculate the time that the object was moving, solve the equation
for the variable t:
t = solve(r = r_0 + v_0*t + a*t^2/2, t)t = piecewise([a <> 0, {-(v_0 - sqrt(v_0^2 +
2*a*r - 2*a*r_0))/a, -(v_0 + sqrt(v_0^2 + 2*a*r - 2*a*r_0))/a}], [a = 0 and v_0
<> 0, {(r - r_0)/v_0}], [r = r_0 and a = 0 and v_0 = 0, C_], [r <> r_0 and a = 0
and v_0 = 0, {}])

3-124

Use Temporary Assumptions

Suppose, you want to keep the general solution for all possible cases of the
linear motion with constant acceleration. You also want to derive several
special cases of this motion and get particular solutions for these cases. For
example, one of the objects you consider moves with constant velocity. Derive
the solution for this object from the general solution for the time of the motion
by assuming the acceleration a = 0:
t = solve(r = r_0 + v_0*t + a*t^2/2, t) assuming a = 0 and r > r_0 and v_0 >
0t = {(r - r_0)/v_0}

The assumption a = 0 holds true only for this particular call to solve. The
assumption does not affect other calculations:
is(a = 0)UNKNOWN

If you set an assumption in the form of an inequality, both sides of an
inequality should represent real values. Inequalities with complex numbers
are invalid because the field of complex numbers is not an ordered field. For
example, if you try to use the following assumption, MuPAD returns an error:
y + 1 assuming y > 2*I Error: Assumptions are inconsistent.
[property::_assume] You can use complex values in assumptions presented
in forms of equations:
y + 1 assuming y = 2*I1 + 2*I

Assign Temporary Values to Parameters
To solve the linear motion equation for particular values of the parameters,
assign the values to the parameters:
r := 4: r_0 := 0: v_0 := 3: a := 2: t = solve(r = r_0 + v_0*t + a*t^2/2, t) assuming
t > 0t = {1}

3-125

3 Mathematics

If you use assignments, MuPAD evaluates variables to their values in all
further computations:
r, r_0, v_0, a4, 0, 3, 2

To be able to reuse the variables in further computations, use the delete
command:
delete r, r_0, v_0, aUsing assumptions, you can temporarily assign values to
the parameters. For example, solve the equation for the following values:
t = solve(r = r_0 + v_0*t + a*t^2/2, t) assuming r = 4 and r_0 = 0 and v_0 =
3 and a = 2 and t > 0t = {1}

The variables remain free for further calculations because temporary
assumptions do not hold true:
r, r_0, v_0, a, tr, r_0, v_0, a, t

If assumptions contain linear equations with one variable, MuPAD solves
these equations, inserts the solutions into the expression, and then evaluates
the expression:
r = r_0 + v_0*t + a*t^2/2 assuming a + 5 = 5 and 2*v_0 + 4 = 14 and t = 3
and r_0 = 0r = 15

3-126

Use Temporary Assumptions

Interactions Between Temporary and Permanent
Assumptions
The assuming command temporarily overwrites all permanent assumptions
set on an object:
assume(z in R_); z assuming z = -2*I-2*I

After evaluating the statement with a temporary assumption, MuPAD
reinstates the permanent assumption:
is(z in R_)TRUE

See how to use temporary assumptions in combination with permanent
assumptions in Using Temporary Assumptions on Top of Permanent
Assumptions.

Use Temporary Assumptions on Top of Permanent
Assumptions
Suppose you set permanent assumptions on a MuPAD object. If you evaluate
the object with a temporary assumption set by the assuming command,
MuPAD ignores the permanent assumptions in this evaluation:
assume(x in R_); solve(x^3 + x = 0, x) assuming (x <> 0){-I, I}

To use permanent assumptions and a temporary assumption together, add
the temporary assumption using the assumingAlso command:
assume(x in R_); solve(x^3 + x = 0, x) assumingAlso (x <> 0){}

3-127

3 Mathematics

When you use temporary assumptions on top of the permanent ones, always
check that the assumptions do not contradict each other. Contradicting
assumptions can lead to inconsistent and unpredictable results. In some
cases, MuPAD detects conflicting assumptions and issues the following error:
assume(x < 0); x assumingAlso (x > 0); Error: Assumptions are inconsistent.
[property::_assume] MuPAD does not guarantee to detect contradicting
assumptions:
assume(x, Type::Even); x assumingAlso (x + 1, Type::Even)x

3-128

Choose Differentiation Function

Choose Differentiation Function
MuPAD provides two functions for differentiation. The choice of the function
depends on which type of object you want to differentiate. To differentiate
mathematical expressions, use the diff command. For example:
diff(cos(x), x); diff(x^3, x)-sin(x)

3*x^2

To differentiate a function or functional expression, use D or its shortcut
’. Using this command, you can differentiate any standard mathematical
function or your custom created function. For example:
D(cos); f := x -> x*sin(x): f’-sin

x -> sin(x) + x*cos(x)

3-129

3 Mathematics

Differentiate Expressions
For differentiating an expression, use the diff command. Specify the
expression you want to differentiate, and the differentiation variable.
Specifying the differentiation variable is important even if your expression
contains only one variable. For example, find the derivative of an expression
with one variable:
diff(x^2 + sqrt(sin(x)), x)2*x + cos(x)/(2*sqrt(sin(x)))

Note If you do not specify differentiation variable, diff(expr) returns the
expression expr.

Find first-order partial derivatives of a multivariable expression by specifying
differentiation variables:
diff(sin(x*cos(x*y)), x); diff(sin(x*cos(x*y)), y)cos(x*cos(x*y))*(cos(x*y) -
x*y*sin(x*y))

-x^2*sin(x*y)*cos(x*cos(x*y))

To take second and higher order derivatives, you can use nested calls to
the diff function. More efficiently, use only one diff command and specify
variables for each differentiation step. Calling diff only once is shorter and
also can improve performance because MuPAD internally converts nested
calls to diff into a single call with multiple arguments:
diff(diff(sqrt(sin(x)), x), x); diff(sqrt(sin(x)), x, x)- sqrt(sin(x))/2 -
cos(x)^2/(4*sin(x)^(3/2))

3-130

Differentiate Expressions

- sqrt(sin(x))/2 - cos(x)^2/(4*sin(x)^(3/2))

When computing higher order derivatives with respect to one variable, use
the sequence operator as a shortcut:
diff(sqrt(sin(x)), x $ 3) = diff(sqrt(sin(x)), x, x, x)cos(x)/(4*sqrt(sin(x)))
+ (3*cos(x)^3)/(8*sin(x)^(5/2)) = cos(x)/(4*sqrt(sin(x))) +
(3*cos(x)^3)/(8*sin(x)^(5/2))

To compute mixed derivatives, specify differentiation variables for each step:
diff(x*cos(x*y), y, x)- 2*x*sin(x*y) - x^2*y*cos(x*y)

Note To improve performance, MuPAD assumes that all mixed derivatives
commute. For example, diff(diff(f(x, y), x), y) = diff(diff(f(x, y), x),

y) .

This assumption suffices for most of engineering and scientific problems.

3-131

3 Mathematics

Differentiate Functions
To compute derivatives of functions, use the differential operator D. This
operator differentiates both standard mathematical functions and your own
functions created in MuPAD. For example, find the first derivatives of the
following standard mathematical functions implemented in MuPAD:
D(sin), D(exp), D(cosh), D(sqrt), D(heaviside)cos, exp, sinh, 1/(2*sqrt(id)), dirac

Create your own function with one variable and compute a derivative of this
function:
f := x -> x^3: D(f)x -> 3*x^2

For univariate functions, use ’ as a shortcut for the differential operator D:
f := x -> sin(x)/x^2: f’; f’(x)x -> cos(x)/x^2 - (2*sin(x))/x^3

cos(x)/x^2 - (2*sin(x))/x^3

The shortcut does not work for multivariate functions:
f := (x, y) -> x + y: f’ Error: A univariate function is expected. [D] To compute a
derivative of a multivariable function, specify the differentiation variable. The
operator D does not accept the names of the variables. Instead of providing
a variable name, provide its index. For example, integrate the following

3-132

Differentiate Functions

function with respect to its first variable x. Then integrate the function with
respect to its second variable y:
f := (x, y) -> x^2 + y^3: D([1], f); D([2], f)(x, y) -> 2*x

(x, y) -> 3*y^2

The list of indices accepted by the operator D refers to the order in which you
provided the variables when creating a function:
f := (x, y) -> x^2 + y^3: D([1], f); f := (y, x) -> x^2 + y^3: D([1], f)(x, y) -> 2*x

(y, x) -> 3*y^2

To find second and higher order partial derivatives of a function, use the same
index two or more times. For example, compute the second-order partial
derivatives with respect to x and with respect to y:
f := (x, y) -> x^3*sin(y): D([1, 1], f); D([2, 2], f)(x, y) -> 6*x*sin(y)

(x, y) -> -x^3*sin(y)

To compute second and higher order derivatives with respect to several
variables (mixed derivatives), provide a list of indices of differentiation
variables:
f := (x, y) -> x^3*sin(y): D([1, 2], f);(x, y) -> 3*x^2*cos(y)

3-133

3 Mathematics

Note To improve performance, MuPAD assumes that all mixed derivatives

commute. For example, D([1, 2], f) = D([2, 1], f) .

This assumption suffices for most of engineering and scientific problems.

3-134

Compute Indefinite Integrals

Compute Indefinite Integrals
To integrate a mathematical expression f means to find an expression F such
that the first derivative of F is f. The expression F is an antiderivative of f.
Integration is a more complicated task than differentiation. In contrast to
differentiation, there is no general algorithm for computing integrals of an
arbitrary expression. When you differentiate an expression, the result is
often represented in terms of the same or less complicated functions. When
you integrate an expression, the result often involves much more complicated
functions than those you use in the original expression. For example, if the
original expression consists of elementary functions, you can get the result in
terms of elementary functions:
int(x + 1/(x^2), x)x^2/2 - 1/x

The following integrand also consists of standard trigonometric functions, but
here the integrator cannot return the result in terms of elementary functions.
The antiderivative involves a special function:
int(sin(x)/x, x)Si(x)

When you compute an indefinite integral, MuPAD implicitly assumes that
the integration variable is real. The result of integration is valid for all real
numbers, but can be invalid for complex numbers. You also can define
properties of the integration variables by using the assume function. The
properties you specify can interfere with the assumption that the integration
variable is real. If MuPAD cannot integrate an expression using your
assumption, the int function issues a warning. Use the intlib::printWarnings
function to switch the warnings on and off. For example, switch on the
warnings:
intlib::printWarnings(TRUE):Suppose you want to integrate the following
expression under the assumption that the integration variable is positive.
This assumption does not conflict with the assumption that the variable is
real. The int command uses your assumption:

3-135

3 Mathematics

f := abs(x): int(f, x) assuming x > 0x^2/2

Integrate this expression under the assumption that x is an integer. MuPAD
cannot integrate the expression over a discrete subset of the real numbers.
The int command issues a warning, and then integrates over the field of real
numbers:
int(f, x) assuming x in Z_ Warning: Cannot integrate when ’x’ has property
’Z_’. The assumption that ’x’ has the property ’R_’ is used for integration.
[intlib::int] (x^2*sign(x))/2

For a discrete set of values of the integration variable, compute a sum instead
of computing an integral. See “Summation” for details.

Now integrate under the assumption that x is imaginary. The int command
cannot compute the integral of the expression over imaginary numbers. It
issues a warning and integrates the expression over the domain of complex
numbers:
assume(x, Type::Imaginary); int(f, x) Warning: Cannot integrate when ’x’ has
property ’{x*I | x in R_}’. The assumption that ’x’ has the property ’C_’ is used
for integration. [intlib::int] piecewise([x = 0, 0], [not x in R_, (x^2*sign(x))/2])

For more information about the assumptions, see “Properties and
Assumptions”. Before you proceed with other computations, clear the
assumption on the variable x:
unassume(x):Also, disable the warnings:

3-136

Compute Indefinite Integrals

intlib::printWarnings(FALSE):

3-137

3 Mathematics

Compute Definite Integrals
For definite integration, the int command restricts the integration variable
x to the given range of integration.
int(sin(ln(x)), x = 0..5)(5*sin(ln(5)))/2 - (5*cos(ln(5)))/2

If the int command determines that an integral does not converge, it returns
the special value undefined:
int(exp(x*I), x = 1..infinity)undefined

When the int command cannot compute an integral and also cannot prove
that the integral does not converge, it returns an unresolved integral:
int(sin(cos(x)), x = 0..10)int(sin(cos(x)), x = 0..10)

For definite integrals, the int command restricts the integration to the
specified interval. If you use the assume function to set properties on
the integration variable, int temporarily overwrites these properties and
integrates over the specified interval. To display warnings, set the value of
intlib::printWarnings to TRUE:
intlib::printWarnings(TRUE): assume(x > 0): int(x, x = 1 .. 2); int(x, x = -3
.. 1) Warning: The assumption that ’x’ has property ’[1, 2]’ instead of given
property ’(0, infinity)’ is used for integration. [int] 3/2

3-138

Compute Definite Integrals

Warning: The assumption that ’x’ has property ’[-3, 1]’ instead of given
property ’(0, infinity)’ is used for integration. [int] -4

After computing an integral, MuPAD restores the assumptions set for
integration variable. If you do not want the assumptions to affect further
computations, use the unassume function:
unassume(x)MuPAD also makes implicit assumptions on the specified
interval. Suppose, you use the integration range as [a, b]. The system
assumes that both a and b represent real numbers, and that a < b unless you
clearly specify otherwise. If you set the value of intlib::printWarnings to TRUE,
MuPAD displays the warning about using implicit assumptions:
int(heaviside(x - a), x = a..b) Warning: Cannot decide if ’a <= b’ is true, will
temporarily assume it is true. [int] b - a

To avoid this implicit assumption, specify that a > b:
int(heaviside(x - a), x = a..b) assuming a > b0

For further computations, disable the warnings:
intlib::printWarnings(FALSE):

3-139

3 Mathematics

Compute Multiple Integrals
To compute multiple integrals, use nested calls to int. For example, compute
the surface area and the volume of a sphere using spherical coordinates.

Compute the expression for the surface area of a sphere. The distance from
the center of a sphere to the surface remains constant, r = R. The angle ϕ
changes its value from 0 to π. The angle χ changes its value from 0 to 2π:
int(int(R^2*sin(phi), phi = 0..PI), chi = 0..2*PI)4*PI*R^2

Compute the expression for the volume of a sphere. The angles accept the
same values, but the distance from the center of any point inside the sphere
ranges from 0 to R. To find the volume, compute the following triple integral:
int(int(int(r^2*sin(phi), r = 0..R), phi = 0..PI), chi = 0..2*PI)(4*PI*R^3)/3

3-140

Compute Multiple Integrals

3-141

3 Mathematics

Apply Standard Integration Methods Directly

In this section...

“Integration by Parts” on page 3-142

“Change of Variable” on page 3-143

Integration by Parts
Integration by parts is one of the common methods for computing integrals.
Using this method, you rewrite the original integral in terms of an expression
containing a simpler integral. Integration by parts for indefinite integrals
uses the definition:

int(u’(x)*v(x),x) = u(x)*v(x) - int(u(x)*v’(x),x)

For definite integrals, integration by parts is defined as follows:

int(u’(x) * v(x), x = a..b) = u(b)*v(b) - u(a)*v(a) - int(u(x)*v’(x), x = a..b)

Internally, MuPAD uses integration by parts along with other integration
methods. To use this method explicitly, call the intlib::byparts function. If
you want to integrate an expression by parts, keep the original integral
unevaluated. By default, int returns evaluated integrals. Use the hold or
freeze commands to prevent evaluation of the integral:
f := freeze(int)(exp(a*x)*cos(I*x*b), x)int(exp(a*x)*cos(b*x*I), x)

3-142

Apply Standard Integration Methods Directly

Call intlib::byparts and specify the part of an expression you want to

integrate. For example, specify u’(x) = exp(a*x) :
f_int := intlib::byparts(f, exp(a*x))- int(-(b*exp(a*x)*sin(b*x*I)*I)/a, x) +
(exp(a*x)*cos(b*x*I))/a

To evaluate the resulting integral, use the eval command:
eval(f_int)(exp(a*x)*cos(b*x*I))/a + (b*exp(a*x)*(a*((exp(b*x)*I)/2 -
(exp(-b*x)*I)/2) - b*(exp(b*x)/2 + exp(-b*x)/2)*I)*I)/(a*(a^2 - b^2))

If the resulting expression is too long, try using the simplify or Simplify
function:
Simplify(%)(exp(a*x - b*x)*(a + b + a*exp(2*b*x) - b*exp(2*b*x)))/(2*(a^2 -
b^2))

Change of Variable
Change of variable is also one of the common methods for computing integrals.
For explicit use of this method, MuPAD provides the intlib::changevar

3-143

3 Mathematics

function. When changing an integration variable, you need to keep the
integral unevaluated. By default, int returns evaluated integrals. Use the
hold or freeze commands to prevent evaluation of the integral:
f := intlib::changevar(hold(int)(sin(exp(x)), x), t = exp(x), t)int(sin(t)/t, t)

To evaluate the resulting integral, use the eval command:
eval(f)Si(t)

The change of variable method also works for computing definite integrals:
f := intlib::changevar(hold(int)(x/sqrt(1 - x^2), x = a..b), t = x^2,
t)int(1/(2*sqrt(1 - t)), t = a^2..b^2)

3-144

Get Simpler Results

Get Simpler Results
When computing integrals, MuPAD applies strict mathematical rules. For
example, integrate the following expression:
int(arcsin(sin(x)), x)x*arcsin(sin(x)) - (x^2*sign(cos(x)))/2

If you want a simple practical solution, try the IgnoreAnalyticConstraints
option. With this option, MuPAD uses a set of simplified mathematical rules
that are not generally correct. The returned results might be shorter and
more useful, for example:
int(arcsin(sin(x)), x, IgnoreAnalyticConstraints)x^2/2

3-145

3 Mathematics

If an Integral Is Undefined
If one of the following conditions is true, a definite integral int(f(x), x =

a..b) might not exist in a strict mathematical sense:

• If the interior of the integration interval (a, b) contains poles of the
integrand f(x).

• If a = - ∞ or b = ∞ or both.

If f(x) changes sign at all poles in (a, b), the so-called infinite parts of the
integral to the left and to the right of a pole can cancel each other. In this
case, use the PrincipalValue option to find a weaker form of a definite
integral called the Cauchy principal value. For example, this integral is not
defined because it has a pole at x = 0:
int(1/x, x = -1..1)undefined

To compute the Cauchy principal value, call int with the option
PrincipalValue:
int(1/x, x = -1..1, PrincipalValue)0

If an expression can be integrated in a strict mathematical sense, and such an
integral exists, the Cauchy principal value coincides with the integral:
int(x^2, x = -1..1) = int(x^2, x = -1..1, PrincipalValue)2/3 = 2/3

3-146

If MuPAD Cannot Compute an Integral

If MuPAD Cannot Compute an Integral

In this section...

“Approximate Indefinite Integrals” on page 3-147

“Approximate Definite Integrals” on page 3-148

If the int command cannot compute a closed form of an integral, MuPAD
returns an unresolved integral:
int(sin(sinh(x)), x)int(sin(sinh(x)), x)

If MuPAD cannot compute an integral of an expression, one of the following
reasons may apply:

• The antiderivative does not exist in a closed form.

• The antiderivative exists, but MuPAD cannot find it.

Try to approximate these integrals by using one of the following methods:

• For indefinite integrals, use series expansions. Use this method to
approximate an integral around a particular value of the variable.

• For definite integrals, use numeric approximations.

Approximate Indefinite Integrals
If int cannot compute an indefinite integral in a closed form, it returns an
unresolved integral:
F := int(cos(x)/sqrt(1 + x^2), x)int(cos(x)/sqrt(x^2 + 1), x)

3-147

3 Mathematics

To approximate the result around some point, use the series function. For
example, approximate the integral around x = 0:
series(F, x = 0)x - x^3/3 + (2*x^5)/15 + O(x^7)

If you know in advance that the integral cannot be found in a closed form,
skip calculating the symbolic form of the integral. To use the system more
efficiently, call the series command to expand the integrand, and then
integrate the result:
int(series(cos(x)/sqrt(1 + x^2), x = 0), x)x - x^3/3 + (2*x^5)/15 + O(x^7)

Approximate Definite Integrals
If int cannot compute a definite integral in a closed form, it returns an
unresolved integral:
F := int(cos(x)/sqrt(1 + x^2), x = 0..10)int(cos(x)/sqrt(x^2 + 1), x = 0..10)

To approximate the result numerically, use the float function:
float(F)0.375706283

If you know in advance that the integral cannot be found in a closed form,
skip calculating the symbolic form of the integral. Use the system more

3-148

If MuPAD Cannot Compute an Integral

efficiently by calling the numeric::int function. This command applies
numeric integration methods from the beginning:
numeric::int(cos(x)/sqrt(1 + x^2), x = 0..10)0.375706283

3-149

3 Mathematics

Compute Symbolic Sums

In this section...

“Indefinite Sums” on page 3-150

“Definite Sums” on page 3-151

“Sums Over Roots of a Polynomial” on page 3-152

Suppose you have an expression with a set of discrete values of a variable.
Computing a sum of this expression over the set of variables is called
summation. The variable over which you compute the sum is called the
summation index. The function you get as a result of a symbolic summation is
called antidifference. MuPAD implicitly assumes that the summation index
uses only integer values. For continuous values of a variable, summation
naturally turns to integration. Similarly to integration, you can compute
indefinite and definite sums including sums over roots of polynomials.

Indefinite Sums
The function f(i) = sum(x_i, i) is called the indefinite sum of xi
over i, if the following identity holds for all values of i:
f(i + 1) - f(i) = x_i

When you compute an indefinite sum, the result often involves much more
complicated functions than those you use in the original expression. If the
original expression consists of elementary functions, you can get the result in
terms of elementary functions:
sum(x^2/(x^2 - 1), x)x - 1/(2*(x - 1)) - 1/(2*x)

Although the following expression consists of elementary functions, the result
involves a special function:

3-150

Compute Symbolic Sums

sum(x/(x^2 + 1), x)psi(x - I)/2 + psi(x + I)/2

Definite Sums
When computing an indefinite sum, the sum command implicitly assumes
that the integration index runs through all integer numbers. Definite
summation lets you specify the range of the summation index. For example,
specify the summation index range using a symbolic parameter:
sum(x/(x^2 + 1), x = a..10*a)- psi(a - I)/2 - psi(a + I)/2 + psi(10*a + 1 - I)/2
+ psi(10*a + 1 + I)/2

sum also computes definite sums with infinite boundaries:
sum(x^n/n!, n = 0..infinity); sum((-1)^n*x^(2*n + 1)/(2*n + 1)!, n =
0..infinity)exp(x)

sin(x)

To find a sum over two variables, use nested calls to sum:
sum(sum(x^n/n!, n = 0..infinity), x = a..100*a)(exp(100*a + 1) - exp(a))/(exp(1)
- 1)

3-151

3 Mathematics

If your sum has a small finite number of terms, use the _plus command
instead of sum. The sum command is slower than _plus:
_plus(x/(x^2 + 1) $ x = 0..10)3829008689/1693047850

To compute a sum for a large finite number of terms, use the sum command:
sum(x/(x^2 + 1), x = 1..10^10)- psi(1 - I)/2 - psi(1 + I)/2 + psi(10000000001 -
I)/2 + psi(10000000001 + I)/2

If the result of a finite summation contains more than 1000 terms, the sum
command returns an unexpanded symbolic sum. If you want to display all the
terms explicitly, use the expand function. To get the expanded result in the
following example, delete the colon at the end of the example:
S := sum(exp(x)/(x^2 + 1), x = a..a + 1000); expand(S):sum(exp(x)/(x^2 + 1),
x = a..a + 1000)

Sums Over Roots of a Polynomial
The sum command also computes sums for which the summation index runs
over all roots of a polynomial. To specify all roots of a polynomial, use RootOf:
sum(i^10, i = RootOf(a*X^10 + b*X^8 + c*X^5 + 1, X))-(10*a^4 - 5*a^3*c^2
+ 2*b^5)/a^5

3-152

Approximate Sums Numerically

Approximate Sums Numerically
If the sum command cannot compute a sum, MuPAD returns an unresolved
sum. For example, try to compute the following sum:
sum(exp(x)^(-x), x = 0..infinity)sum(1/exp(x)^x, x = 0..infinity)

The reasons MuPAD cannot compute the closed form of a particular sum are
the same as the reasons for not computing an integral:

• The antidifference does not exist in a closed form.

• The antidifference exists, but MuPAD cannot find it.

• MuPAD can find the antidifference on a larger computer, but runs out of
time or memory on the available machine.

If MuPAD cannot compute a definite sum, try to approximate it numerically:
S := sum(exp(x)^(-x), x = 0..infinity); float(S)sum(1/exp(x)^x, x = 0..infinity)

1.386318602

If you know in advance that the antidifference cannot be computed in a closed
form, skip trying to calculate this sum symbolically. For such expressions, call
the numeric::sum function to perform numeric summation directly. Trying to
calculate a symbolic sum, and then approximating it numerically can be much
slower than applying numeric summation from the beginning:
numeric::sum(exp(x)^(-x), x = 0..infinity)1.386318602

3-153

3 Mathematics

3-154

Compute Taylor Series for Univariate Expressions

Compute Taylor Series for Univariate Expressions
Taylor series expansions serve for approximating an arbitrary expression
by a polynomial expression around some value of a variable. Taylor series
expansions approximate expressions for which the derivatives up to infinite
order exist around a particular value x0 of a variable x:

f(x) = f(x_0) + f’(x_0)/1! + f’’(x_0)/2! + ‘...‘ = sum(f^(‘{(n)}‘)*(‘{(x_0)}‘)/n!*(x -
x_0)^n, n = 0..infinity)

To compute Taylor series expansion, use the taylor command. For example,
approximate the expression sin(x)/x around x = 0:
exact := sin(x)/x: approx := taylor(sin(x)/x, x)1 - x^2/6 + x^4/120 + O(x^6)

Plot the exact expression and its taylor series expansion in the same
coordinate system. The taylor series expansion approximates the expression
near x = 0, but visibly deviates from sin(x)/x for larger |x|:
plot(plot::Function2d(exact, x = -PI..PI, Legend = "sin(x)/x", Color = RGB::Red),
plot::Function2d(approx, x = -PI..PI, Legend = "approximation of sin(x)/x"))

3-155

3 Mathematics

Accuracy of an approximation depends on the proximity to the expansion
point and on the number of terms used in the series expansion. See how to
specify the number of terms in Controlling the Number of Terms in Series
Expansions.

Taylor series expansions around x = 0 are also called Maclaurin series
expansions. Approximate the expressions by Maclaurin series:
taylor(exp(x), x); taylor(sin(x), x); taylor(cos(x)/(1 - x), x)1 + x + x^2/2 + x^3/6 +
x^4/24 + x^5/120 + O(x^6)

x - x^3/6 + x^5/120 + O(x^7)

3-156

Compute Taylor Series for Univariate Expressions

1 + x + x^2/2 + x^3/2 + (13*x^4)/24 + (13*x^5)/24 + O(x^6)

The Maclaurin series expansion does not exist for the following expression.
MuPAD returns an error:
taylor(arccot(x), x) Error: Cannot compute a Taylor expansion of ’arccot(x)’.
Try ’series’ for a more general expansion. [taylor] You can represent the
following expression by a Taylor series around x = 1. To compute the
series expansion around a nonzero value of a variable, specify the value.
For example, compute the Taylor series expansions around x = 1 for the
following expressions:
taylor(ln(x), x = 1); taylor(arccot(x), x = 1)x - 1 - (x - 1)^2/2 + (x - 1)^3/3 - (x -
1)^4/4 + (x - 1)^5/5 - (x - 1)^6/6 + O((x - 1)^7)

PI/4 - (x - 1)/2 + (x - 1)^2/4 - (x - 1)^3/12 + (x - 1)^5/40 + O((x - 1)^6)

The taylor command returns results in the form of taylor series including
the order term O. To convert the results to a regular polynomial expression
without the O-term, use the expr command:
s := taylor(sin(x)/exp(x), x); expr(s)x - x^2 + x^3/3 - x^5/30 + x^6/90 + O(x^7)

x^6/90 - x^5/30 + x^3/3 - x^2 + x

3-157

3 Mathematics

3-158

Compute Taylor Series for Multivariate Expressions

Compute Taylor Series for Multivariate Expressions
To compute a series expansion for a multivariate expression, use the mtaylor
command. When expanding multivariate expressions, list all variables and
their values to specify the expansion point. By default, mtaylor computes
the series expansion around the point where the values of all variables are
equal to zero:
mtaylor(exp(x*y), [x, y])(x^2*y^2)/2 + x*y + 1

Specify all nonzero values of the variables at the point where you want to
compute the series expansion. Besides numbers and symbolic parameters,
mtaylor also accepts real positive infinity infinity and real negative infinity
- ∞:
mtaylor((1 - x)^(1/2)/exp(1/y), [x, y = infinity])x^2/(8*y) - x/2 - x^2/(16*y^2)
+ x^3/(16*y) + x^2/(48*y^3) - x^3/(32*y^2) + (5*x^4)/(128*y) + x/(2*y) -
x/(4*y^2) + x/(12*y^3) - x/(48*y^4) - x^2/8 - x^3/16 - (5*x^4)/128 - (7*x^5)/256
- 1/y + 1/(2*y^2) - 1/(6*y^3) + 1/(24*y^4) - 1/(120*y^5) + 1

3-159

3 Mathematics

Control Number of Terms in Series Expansions
Taylor series expansions approximate an arbitrary expression with a
polynomial. The number of terms in a series expansion determines the
accuracy of the approximation. The number of terms in a series expansion
depends on the truncation order of the expansion. By default, MuPAD
computes the first six terms of series expansions:
taylor(exp(x), x)1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + O(x^6)

The number of terms includes the terms with coefficients equal to zero. For
example, the taylor series expansion of cos(x) includes the terms 0x, 0x3, and
0x5. MuPAD computes these terms, but does not display them:
taylor(cos(x), x)1 - x^2/2 + x^4/24 + O(x^6)

Suppose, you want to approximate an exponential function with the
polynomial expression around x = 0. Use the third parameter in taylor
to specify the order of series expansion. For example, compute the series
expansions approx1 specifying the truncation order 3. Compare the result
with the series expansion computed for the default order:
exact := exp(x): approx1 := taylor(exp(x), x, 3); approx2 := taylor(exp(x), x)1
+ x + x^2/2 + O(x^3)

1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + O(x^6)

3-160

Control Number of Terms in Series Expansions

Plot the exact expression, exact, and its taylor series expansions, approx1
and approx2, in the same coordinate system. The series expansion with more
terms approximates the expression exp(x) better:
plot(plot::Function2d(exact, x = -PI..PI, Legend = "exp(x)", Color = RGB::Red),
plot::Function2d(approx2, x = -PI..PI, Legend = "approximation of exp(x), up
to O(x^6)", Color = RGB::Blue), plot::Function2d(approx1, x = -PI..PI, Legend
= "approximation of exp(x), up to O(x^3)", Color = RGB::Green))

There are two ways to change the truncation order for series expansions:

• Locally by passing the truncation order as the third parameter to taylor.
By using this parameter, you specify the truncation order for a particular
series expansion. All other series expansions use the default order. The
parameter is available for the following commands: taylor, mtaylor, and
series. For more information, see the help pages for these commands.

• Globally by using the environment variable ORDER. When you change this
variable, all series expansions use the new truncation order.

3-161

3 Mathematics

To change the truncation order for a particular series expansion, pass the new
order as a third parameter to taylor:
taylor(exp(x), x, 10)1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + x^6/720 +
x^7/5040 + x^8/40320 + x^9/362880 + O(x^10)

To change the default truncation order for all series expansions, modify the
environment variable ORDER:
ORDER := 7: taylor(exp(x), x)1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 +
x^6/720 + O(x^7)

The following computations use the new value of ORDER:
taylor(sqrt(1 - x), x)1 - x/2 - x^2/8 - x^3/16 - (5*x^4)/128 - (7*x^5)/256 -
(21*x^6)/1024 + O(x^7)

To restore the default value of ORDER, use the delete command:
delete ORDER: taylor(sqrt(1 - x), x)1 - x/2 - x^2/8 - x^3/16 - (5*x^4)/128 -
(7*x^5)/256 + O(x^6)

3-162

O-term (The Landau Symbol)

O-term (The Landau Symbol)
When computing the series expansions, you get expressions with one of the
terms represented as the Landau symbol O. This term shows the truncation
order (error order) of the computed series expansion.

MuPAD automatically simplifies the O-term:
O(10*x^7 + 20*x^8), O(x^2 + x + 1), O(x^3*y^2 + x^2*y^2)O(x^7), O(1),
O(x^2*y^2)

When evaluating expressions with order terms, the system uses standard
arithmetical operations for these terms:
O(x^3)/O(x^2), O(x^3) + O(x^2), O(x^3)*O(x^2)O(x), O(x^2), O(x^5)

3-163

3 Mathematics

Compute Generalized Series
The Taylor series expansion is the most common way to approximate an
expression by a polynomial. However, not all expressions can be represented
by Taylor series. For example, you cannot compute a Taylor series expansion
for the following expression around x = 2:
taylor(1/(x^3 - 8), x = 2) Error: Cannot compute a Taylor expansion of ’1/(x^3
- 8)’. Try ’series’ for a more general expansion. [taylor] If a Taylor series
expansion does not exist for your expression, try to compute other power
series. MuPAD provides the function series for computing power series. When
you call series, MuPAD tries to compute the following power series:

• Taylor series

• Laurent series

• Puiseux series. For more information, see Series::Puiseux.

• Generalized series expansion of f around x = x0. For more information, see
Series::gseries.

As soon as series computes any type of power series, it does not continue
computing other types of series, but stops and returns the result. For
example, for this expression it returns a Laurent series:
S := series(1/(x^3 - 8), x = 2); testtype(S, Type::Series(Laurent))1/(12*(x - 2)) -
1/24 + (x - 2)/72 - (x - 2)^2/288 + (x - 2)^3/1728 + O((x - 2)^5)

TRUE

When computing series expansions, MuPAD returns only those results
that are valid for all complex values of the expansion variable in some
neighborhood of the expansion point. If you need the expansion to be valid
only for real numbers, use the option Real. For example, when you compute

3-164

Compute Generalized Series

the series expansion of the following expression for complex numbers, series
returns:
series(sign(x^2*sin(x)), x = 0)sign(x^2*sin(x)) + O(x^6)

When you compute the series expansion for real numbers, series returns a
simplified result:
series(sign(x^2*sin(x)), x = 0, Real)sign(x)^3 + O(x^6)

Along the real axis, compute series expansions for this expression when x
approaches the value 0 from the left and from the right sides:
series(sign(x^2*sin(x)), x = 0, Left); series(sign(x^2*sin(x)), x = 0, Right)- 1
+ O(x^6)

1 + O(x^6)

3-165

3 Mathematics

Compute Bidirectional Limits
Suppose, you have a function f(x). The value C is a limit of the function
f(x) at x = x0:

C = limit(f(x), x = x_0)

MuPAD provides the limit command for computing limits. When computing
a limit for a variable approaching 0, you can omit specifying x0. By default,
the limit command assumes x0 = 0:
limit(sin(x)/x, x = 0); limit((1 - cos(x))/x, x)1

0

Note Avoid computing limits for floating-point arguments.

If you use floating-point numbers as the parameters of limit, the round-off
error can completely change the result. For example, a small error in the
following example with the floating-point parameter changes the result from
a rational number to the floating-point infinity:
limit((sin(x) - x)/x^3, x = 0); limit((1.000001*sin(x) - x)/x^3, x = 0)-1/6

RD_INF

3-166

Compute Bidirectional Limits

3-167

3 Mathematics

Compute Right and Left Limits
If a limit of a function at a particular value of a variable does not exist, the
limit command returns undefined. For example, tan(x) does not have a

bidirectional limit at x = PI/2 :
limit(tan(x), x = PI/2)undefined

The plot of this function shows that the function can have two different limits

as the variable x approaches the value PI/2 from the left and from the right:
plot(tan(x), x = -PI..PI)

To compute one-sided limits of a function, use the options Left and Right:
limit(tan(x), x = PI/2, Left); limit(tan(x), x = PI/2, Right)infinity

3-168

Compute Right and Left Limits

-infinity

If the function has a bidirectional limit at some point, one-sided limits are
equal at this point. They also are equal to the bidirectional limit at this point:
Left = limit(abs(tan(x)), x = PI/2, Left); Right = limit(abs(tan(x)), x = PI/2,
Right); Bidirectional = limit(abs(tan(x)), x = PI/2)Left = infinity

Right = infinity

Bidirectional = infinity

plot(abs(tan(x)), x = 0..PI)

3-169

3 Mathematics

3-170

If Limits Do Not Exist

If Limits Do Not Exist
If the limit command cannot compute a limit of a function at a particular
point and also cannot prove that the limit is not defined at this point, the
command returns an unresolved limit:
limit(exp(x)*cos(1/x), x = 0)limit(cos(1/x)*exp(x), x = 0)

The function exp(x)*cos(1/x) also does not have one-sided limits at x = 0:
limit(exp(x)*cos(1/x), x = 0, Left); limit(exp(x)*cos(1/x), x = 0, Right)undefined

undefined

The plot shows that as exp(x)*cos(1/x) approaches x = 0, the function

oscillates between -exp(x) and exp(x) :
p1 := plot::Function2d(exp(x)*cos(1/x), x = -PI/4..PI/4): p2 :=
plot::Function2d(exp(x), x = -PI/4..PI/4, Color = RGB::Red): p3 :=
plot::Function2d(-exp(x), x = -PI/4..PI/4,Color = RGB::Red): plot(p1, p2, p3)

3-171

3 Mathematics

To get the interval of all possible accumulation points of the function
exp(x)*cos(1/x) near the singularity x = 0, use the option Intervals:
limit(exp(x)*cos(1/x), x = 0, Intervals)Dom::Interval([-1], [1])

3-172

Create Matrices

Create Matrices
MuPAD supports creating and operating on vectors and multidimensional
matrices. Vectors and matrices in MuPAD can contain arbitrary MuPAD
objects: numbers, variables, arithmetical expressions, and so on. The simplest
way to create a matrix is to use the matrix command:
matrix([[1, 2, 3], [4, 5, 6]])matrix([[1, 2, 3], [4, 5, 6]])

When creating a matrix, you can explicitly specify its dimensions. If you
specify matrix dimensions, you can use a flat list to specify all elements
of a matrix. The matrix command takes the entries from the flat list and
generates a matrix, row by row. For example, create the following 2 3 matrix:
matrix(2, 3, [1, 2, 3, 4, 5, 6])matrix([[1, 2, 3], [4, 5, 6]])

Using the same list of elements, create the following 3 2 matrix:
matrix(3, 2, [1, 2, 3, 4, 5, 6])matrix([[1, 2], [3, 4], [5, 6]])

If you specify matrix dimensions, and then enter rows or columns shorter
than the declared dimensions, MuPAD pads the matrix with zero elements:
matrix(3, 3, [[1, 2, 3], [4, 5, 6]])matrix([[1, 2, 3], [4, 5, 6], [0, 0, 0]])

matrix(3, 3, [[1, 2, 3], [4]])matrix([[1, 2, 3], [4, 0, 0], [0, 0, 0]])

3-173

3 Mathematics

If you use a flat list, MuPAD cannot determine where to put zeros and,
therefore, issues an error:
matrix(3, 3, [1, 2, 3, 4]) Error: The number of list entries does not match
matrix row dimension. [(Dom::Matrix(Dom::ExpressionField()))::mkSparse] If
you specify matrix dimensions, and then enter rows or columns longer than
the declared dimensions, MuPAD also issues an error:
A := matrix(2, 3, [[1, 2, 3], [4, 5, 6], [7, 8, 9]]) Error: The
number of list entries does not match matrix row dimension.
[(Dom::Matrix(Dom::ExpressionField()))::mkSparse] The matrix command
creates an object of the type Dom::Matrix():
A := matrix([[1, 2, 3], [4, 5, 6]]): type(A)Dom::Matrix()

3-174

Create Vectors

Create Vectors
Vectors in MuPAD do not form a separate data type. As matrices, vectors
belong to the type Dom::Matrix(). To create a row or a column vector, use
the matrix command and specify one of the dimensions to be 1. For example,
create a row vector that contains five elements:
matrix(1, 5, [1, 2, 3, 4, 5])matrix([[1, 2, 3, 4, 5]])

Now, create a column vector of five elements:
matrix(5, 1, [1, 2, 3, 4, 5])matrix([[1], [2], [3], [4], [5]])

If you do not specify the dimensions, the matrix command creates a column
vector:
matrix([x, y, z])matrix([[x], [y], [z]])

3-175

3 Mathematics

Create Special Matrices
MuPAD provides functions for creating special types of matrices such as
identity, diagonal, Hilbert, Toeplitz, and other matrices. For example, create
the 3 3 identity matrix:
matrix::identity(3)matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

Now, create the 3 3 diagonal matrix with the number 5 on the diagonal:
matrix(3, 3, 5, Diagonal)matrix([[5, 0, 0], [0, 5, 0], [0, 0, 5]])

To create a matrix containing variables or arithmetical expressions, always
use a list to specify matrix elements. For example, when creating the 3 3
diagonal matrix with the variable x on its main diagonal, specify the diagonal
elements in a list [x, x, x]. As a shortcut for creating this list, you can
use the sequence generator $:
matrix(3, 3, [x $ 3], Diagonal)matrix([[x, 0, 0], [0, x, 0], [0, 0, x]])

To create special matrices such as Hilbert, Toeplitz, Pascal, or Vandermonde
matrices, use the appropriate function of the linalg library. For example, to
create the 4 4 Hilbert matrix, use the linalg::hilbert function:
linalg::hilbert(3)matrix([[1, 1/2, 1/3], [1/2, 1/3, 1/4], [1/3, 1/4, 1/5]])

3-176

Create Special Matrices

To create a matrix of random numbers, use the linalg::randomMatrix function.
For example, create a matrix of random integer numbers:
linalg::randomMatrix(3, 4, Dom::Integer)Dom::Matrix(Dom::Integer)([[824,
-65, -814, -741], [-979, -764, 216, 663], [880, 916, 617, -535]])

Now, create a matrix that has random rational numbers on the main diagonal
and zeros everywhere else:
linalg::randomMatrix(3, 3, Diagonal,
Dom::Rational)Dom::Matrix(Dom::Rational)([[-245/597, 0, 0], [0, 747/79, 0],
[0, 0, -535/477]])

3-177

3 Mathematics

Access and Modify Matrix Elements

In this section...

“Use Loops to Modify Matrix Elements” on page 3-178

“Use Functions to Modify Matrix Elements” on page 3-179

MuPAD lets you access and change each individual element of a vector or a
matrix. For example, create the 3 4 matrix of zeros:
A := matrix(3, 4)matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])

To access any element of the matrix, use square brackets to specify indices.
For example, assign the value 22 to the second element of the second row of A:
A[2, 2] := 22:Now, assign the value 23 to the third element of the second row
of A:
A[2, 3] := 23:Display the modified matrix A:
Amatrix([[0, 0, 0, 0], [0, 22, 23, 0], [0, 0, 0, 0]])

Use Loops to Modify Matrix Elements
When changing values of the elements of a matrix, you can use loops. For
example, use the for loop to define each element of A as a product of its row
and column indices:
for i from 1 to 3 do for j from 1 to 4 do A[i, j] := i*j end_for end_for: Amatrix([[1,
2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12]])

3-178

Access and Modify Matrix Elements

Use Functions to Modify Matrix Elements
Another way to specify a large number of matrix entries efficiently is to create
and use a function. For example, define each element as a sum of its row and
column indices:
f := (i, j)->(i + j): A := matrix(3, 4, f)matrix([[2, 3, 4, 5], [3, 4, 5, 6], [4, 5, 6, 7]])

3-179

3 Mathematics

Create Matrices over Particular Rings
The matrix command creates a matrix over Dom::ExpressionField(). The
components of such matrices can be arbitrary arithmetical expressions.
Alternatively, you can create your own matrix constructor and use it to create
matrices with elements in a particular ring. When operating on such matrices,
most of the MuPAD functions perform computations over the specified ring.
One exception is the numeric library functions. The call Dom::Matrix(R)
creates the constructor for matrices of arbitrary dimensions with the elements
in the ring R. To specify the ring R, you can use the predefined rings and
fields such as Dom::Integer or Dom::IntegerMod(n) or others from the Dom
library. For example, define the constructor that creates matrices over the
ring of integer numbers:
constructor := Dom::Matrix(Dom::Integer)Dom::Matrix(Dom::Integer)

Use that constructor to produce matrices with integer elements:
A := constructor(3, 3, [[1, 2, 3], [2, 3, 1], [3, 1, 2]])Dom::Matrix(Dom::Integer)([[1,
2, 3], [2, 3, 1], [3, 1, 2]])

When you use the constructor to create a matrix, you must ensure that all
matrix elements belong to the ring or can be converted to the elements in that
ring. Otherwise, the constructor issues an error and does not create a matrix:
constructor(3, 3, [[1/3, 2, 3], [2, 3, 1], [3, 1, 2]]) Error: Cannot define a
matrix over ’Dom::Integer’. [(Dom::Matrix(Dom::Integer))::new] If you use a
constructor to create a matrix over a particular ring, you cannot use that
matrix in operations that create matrices with elements outside of the ring.
For example, you cannot compute the inverse of the matrix A because the
inverse matrix contains noninteger numbers:
1/AFAIL

3-180

Create Matrices over Particular Rings

Now, create the matrix containing the same elements as A, but use the
constructor for matrices with rational numbers:
constructorRational := Dom::Matrix(Dom::Rational): B
:= constructorRational(3, 3, [[1, 2, 3], [2, 3, 1], [3, 1,
2]])Dom::Matrix(Dom::Rational)([[1, 2, 3], [2, 3, 1], [3, 1, 2]])

Compute the inverse of the matrix B:
1/BDom::Matrix(Dom::Rational)([[-5/18, 1/18, 7/18], [1/18, 7/18, -5/18], [7/18,
-5/18, 1/18]])

3-181

3 Mathematics

Use Sparse and Dense Matrices
When you use matrices in MuPAD computations, both computational
efficiency and memory use can depend on whether the matrix is sparse or
dense. Sparse matrices contain a large number of zero-valued elements. The
internal storage of matrices in MuPAD is optimized for sparse data. MuPAD
saves the nonzero elements and their indices. When you use sparse matrices,
MuPAD assumes that all unspecified elements are zeros. When operating on
large sparse matrices, consider the following methods for better performance:

• To create matrices, use the matrix function or the constructor
Dom::Matrix() whenever possible. Both the constructor and the
function create matrices over the ring of arbitrary MuPAD expressions
Dom::ExpressionField().

• When solving systems of equations represented by sparse matrices, avoid
computing inverse matrices. Instead, use linalg::matlinsolve to find exact
symbolic solutions or numeric::matlinsolve to find numeric approximations.

• Avoid creating large empty matrices, and then using indexed assignments
for nonzero values. Indexed assignments in MuPAD are expensive
operations. Specifying the elements at the same time when you create a
matrix is more efficient. For example, the command
matrix(10, 10, [-1, 2, -1], Banded):is more efficient than
A := matrix(10, 10): for i from 1 to 10 do A[i, i] := 2: end_for: for i from 1
to 9 do A[i, i + 1] := -1: A[i + 1, i] := -1: end_for:

Dense matrices contain only a few or no zero-valued elements. MuPAD
provides a special matrix domain for dense matrices. To create such matrices,
use the densematrix function, which is a shortcut for the constructor
Dom::DenseMatrix(). You also can use the constructor itself. For matrices
of the Dom::DenseMatrix() domain, indexed reading and writing is faster
than for matrices of the Dom::Matrix() domain.

3-182

Compute with Matrices

Compute with Matrices

In this section...

“Basic Arithmetic Operations” on page 3-183

“More Operations Available for Matrices” on page 3-184

Basic Arithmetic Operations
When performing basic arithmetic operations on matrices, use the standard
arithmetic operators. For example, add, substract, multiply, and divide the
following two matrices by using the standard +, -, *, and / operators:
A := matrix([[a, b], [c, d]]): B := matrix([[1, 2], [3, 4]]): A + B, A - B, A*B,
A/Bmatrix([[a + 1, b + 2], [c + 3, d + 4]]), matrix([[a - 1, b - 2], [c - 3, d - 4]]),
matrix([[a + 3*b, 2*a + 4*b], [c + 3*d, 2*c + 4*d]]), matrix([[(3*b)/2 - 2*a, a -
b/2], [(3*d)/2 - 2*c, c - d/2]])

To perform basic operations on a matrix and a number, use the same
operators. When you multiply a matrix by a number, MuPAD multiplies all
elements of a matrix by that number:
5*Amatrix([[5*a, 5*b], [5*c, 5*d]])

When you add a number to a matrix, MuPAD multiplies the number by an
identity matrix, and then adds the result to the original matrix:
A + 5matrix([[a + 5, b], [c, d + 5]])

3-183

3 Mathematics

Note MATLAB adds a number to each element of a matrix. MuPAD adds a
number only to the diagonal elements of a matrix.

You can combine matrices with the same number of rows by using the
concatenation operator (.):
A.Bmatrix([[a, b, 1, 2], [c, d, 3, 4]])

More Operations Available for Matrices
Besides standard arithmetic operations, many other MuPAD functions are
available for computations involving matrices and vectors. To check whether
a particular function accepts matrices as parameters, see the “Parameters”
section of the function help page. The following functions can operate on
matrices:

• The conjugate function computes the conjugate of each complex element
of a matrix:
A := matrix([[1, 2 + 3*I], [1 - I, 2*I]]): conjugate(A)matrix([[1, 2 + (- 3*I)],
[1 + I, -2*I]])

• The int and diff functions compute the derivative and the integral of each
element of a matrix:
A := matrix(2, 2, [x, x^2, x^3, x^4]): int(A, x), diff(A, x)matrix([[x^2/2,
x^3/3], [x^4/4, x^5/5]]), matrix([[1, 2*x], [3*x^2, 4*x^3]])

3-184

Compute with Matrices

• The expand function expands each element of a matrix:
A := matrix(2, 2, [x, (x + 1)^2, x*(x - 1), x*(x + 4)]): expand(A)matrix([[x,
x^2 + 2*x + 1], [x^2 - x, x^2 + 4*x]])

• The map function applies the specified function to all operands of each
element of a matrix:
A := matrix(3, 3, [1, 2, 3], Diagonal): B := map(A, sin)matrix([[sin(1), 0, 0],
[0, sin(2), 0], [0, 0, sin(3)]])

• The float function converts each element of a matrix or numerical
subexpressions of each element of a matrix to floating-point numbers:
float(B)matrix([[0.8414709848, 0, 0], [0, 0.9092974268, 0], [0, 0,
0.1411200081]])

• The evalAt function (and its shortcut |) substitutes the specified object by
another specified object, and then evaluates each element of a matrix:
A := matrix(2, 2, [x, x^2, x^3, x^4]): A|x = 2matrix([[2, 4], [8, 16]])

3-185

3 Mathematics

• The subs function returns a copy of a matrix in which the specified object
replaces all instances of another specified object. The function does not
evaluate the elements of a matrix after substitution:
A := matrix(2, 2, [x, x^2, x^3, x^4]): subs(A, x = exp(y))matrix([[exp(y),
exp(2*y)], [exp(3*y), exp(4*y)]])

• The has function determines whether a matrix contains the specified object:
A := matrix(2, 2, [x, x^2, x^3, x^4]): has(A, x^3), has(A, x^5)TRUE, FALSE

• The iszero function checks whether all elements of a matrix are zeros:
A := matrix(2, 2): iszero(A)TRUE

A[1, 1] := 1: iszero(A)FALSE

• The norm function computes the infinity norm (row sum norm) of a matrix:
A := matrix(2, 2, [a_1_1, a_1_2, a_2_1, a_2_2]): norm(A)max(abs(a_1_1) +
abs(a_1_2), abs(a_2_1) + abs(a_2_2))

• The zip(A, B, f) function combines matrices A and B into a matrix C
so that Cij = f(Aij, Bij):

3-186

Compute with Matrices

A := matrix(2, 2, [a, b, c, d]): B := matrix(2, 2, [10, 20, 30, 40]): zip(A, B,
_power)matrix([[a^10, b^20], [c^30, d^40]])

3-187

3 Mathematics

Compute Determinants and Traces of Square Matrices
MuPAD provides the functions for performing many special operations
on matrices. You can compute the dimensions of a matrix, swap or delete
columns and rows, or transpose a matrix. For square matrices, you can
compute determinants and traces.

To compute the determinant of a square matrix, use the det function. For
example, compute the determinant of the following 2 2 matrix:
A := matrix(2, 2, [a, b, c, d]): det(A)a*d - b*c

Now, compute the determinant of the 12 12 Hilbert matrix:
det(linalg::hilbert(12))1/3791065794363045171518854790347963918801886878641184641

To compute a sum of the diagonal elements of a square matrix (the trace of a
matrix), use the linalg::tr function. For example, the trace of the matrix A is:
A := matrix(2, 2, [a, b, c, d]): linalg::tr(A)a + d

Now, compute the trace of the 12 12 Hilbert matrix:
H := linalg::hilbert(12): linalg::tr(H)744355888/334639305

3-188

Invert Matrices

Invert Matrices
To find the inverse of a matrix, enter 1/A or A^(-1):
A := matrix([[a, b], [c, d]]): B := matrix([[1, 2], [3, 4]]): 1/A;
B^(-1)matrix([[d/(a*d - b*c), -b/(a*d - b*c)], [-c/(a*d - b*c), a/(a*d - b*c)]])

matrix([[-2, 1], [3/2, -1/2]])

When MuPAD cannot compute the inverse of a matrix, it returns FAIL:
C := matrix([[1, 1], [1, 1]]): 1/CFAIL

3-189

3 Mathematics

Transpose Matrices
To transpose a matrix, use the transpose command:
A := matrix([[1, 2, 3], [4, 5, 6]]): transpose(A)matrix([[1, 4], [2, 5], [3, 6]])

3-190

Swap and Delete Rows and Columns

Swap and Delete Rows and Columns
The MuPAD linalg library provides the functions for interchanging or deleting
rows and columns of a matrix. For example, to swap two rows of a matrix, use
linalg::swapRow. To swap two columns, use linalg::swapCol:
OriginalMatrix := linalg::pascal(3); SwapRows :=
linalg::swapRow(OriginalMatrix, 1, 2); SwapColumns
:=linalg::swapCol(OriginalMatrix, 1, 2)matrix([[1, 1, 1], [1, 2, 3], [1, 3, 6]])

matrix([[1, 2, 3], [1, 1, 1], [1, 3, 6]])

matrix([[1, 1, 1], [2, 1, 3], [3, 1, 6]])

To delete a row or a column, use linalg::delRow or linalg::delCol, respectively:
OriginalMatrix := linalg::pascal(3); DeleteRows :=
linalg::delRow(OriginalMatrix, 3); DeleteColumns :=
linalg::delCol(OriginalMatrix, 3)matrix([[1, 1, 1], [1, 2, 3], [1, 3, 6]])

matrix([[1, 1, 1], [1, 2, 3]])

3-191

3 Mathematics

matrix([[1, 1], [1, 2], [1, 3]])

To delete a block of rows or columns simultaneously, use the same functions
as for one row or column. Specify the range of rows or columns that you want
to delete:
OriginalMatrix := linalg::pascal(3); DeleteRows :=
linalg::delRow(OriginalMatrix, 2..3); DeleteColumns :=
linalg::delCol(OriginalMatrix, 2..3)matrix([[1, 1, 1], [1, 2, 3], [1, 3, 6]])

matrix([[1, 1, 1]])

matrix([[1], [1], [1]])

3-192

Compute Dimensions of a Matrix

Compute Dimensions of a Matrix
To find the dimensions of a matrix, use the linalg::matdim command. For
example, concatenate the following matrices and compute the dimensions of
the resulting matrix:
A := matrix([[a, b], [c, d]]): B := matrix([[1, 2, 3], [4, 5, 6]]):
linalg::matdim(A.B.A.A.B)[2, 12]

3-193

3 Mathematics

Compute Reduced Row Echelon Form
For the reduced row echelon form of a matrix, the following conditions are
valid:

• The rows with all zero elements are at the bottom.

• The pivot (leading coefficient) of each nonzero row always occurs to the
right of the leading coefficient of the row above.

• If the component ring of the original matrix is a field, the reduced row
echelon form is unique, and each pivot is 1.

To find the reduced row echelon form of a matrix, use the linalg::gaussJordan
function. This function performs Gauss Jordan elimination on a matrix:
A := matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]):
linalg::gaussJordan(A)matrix([[1, 0, -1, -2], [0, 1, 2, 3], [0, 0, 0, 0], [0, 0, 0, 0]])

3-194

Compute Rank of a Matrix

Compute Rank of a Matrix
The rank of a matrix is the number of independent rows of a matrix. For a
matrix in its reduced row echelon form, the rank is the number of nonzero
rows. To compute the rank of a matrix, use the linalg::rank function. For
example, compute the rank of the following square matrix:
A := matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]):
linalg::rank(A)2

Now, compute the reduced row echelon form and the rank of the following 3 4
matrix:
OriginalMatrix := matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11], [13,
14, 15]]); RREF = linalg::gaussJordan(OriginalMatrix); Rank =
linalg::rank(OriginalMatrix)matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11], [13, 14, 15]])

RREF = matrix([[1, 0, -1], [0, 1, 2], [0, 0, 0], [0, 0, 0]])

Rank = 2

3-195

3 Mathematics

Compute Bases for Null Spaces of Matrices

All vectors ‘x→‘ such that A * ‘x→‘=‘0→‘ form the
null space of the matrix A. The basis of a null space is a list B of linearly

independent vectors, such that the equation A * ‘x→‘=‘0→‘

is valid if and only if ‘x→‘ is a linear combination of the vectors in B. To
find a basis for the null space of a matrix, use the linalg::nullspace function.
For example, compute the basis for the null space of the square matrix A:
A := matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]):
linalg::nullspace(A)[matrix([[1], [-2], [1], [0]]), matrix([[2], [-3], [0], [1]])]

Now, compute the basis for the null space of the following 3 4 matrix:
B := matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11], [13, 14, 15]]):
linalg::nullspace(B)[matrix([[1], [-2], [1]])]

3-196

Find Eigenvalues and Eigenvectors

Find Eigenvalues and Eigenvectors
Linear transformations are operations that matrices perform on vectors. An
eigenvalue and eigenvector of a square matrix A are, respectively, a scalar λ

and a nonzero vector ‘v→‘ such that

A*‘v→‘ = Symbol::lambda*‘v→‘

Typically, if a matrix changes the length of a vector, but does not change its
direction, the vector is called an eigenvector of the matrix. The scaling factor
is the eigenvalue associated with this eigenvector.

MuPAD provides the functions for computing eigenvalues and eigenvectors.
For example, create the following square matrix:
A := matrix([[1, 2, 3], [4, 5, 6], [1, 2, 3]])matrix([[1, 2, 3], [4, 5, 6], [1, 2, 3]])

To compute the eigenvalues of the matrix A, use the linalg::eigenvalues
function:
linalg::eigenvalues(A){0, 9}

The linalg::eigenvalues function returns a set of eigenvalues. A set in MuPAD
cannot contain duplicate elements. Therefore, if a matrix has eigenvalues
with multiplicities greater than 1, MuPAD automatically removes duplicate
eigenvalues. If you want the linalg::eigenvalues function to return eigenvalues
along with their multiplicities, use the Multiple option. For example, zero is
a double eigenvalue of the matrix A:
linalg::eigenvalues(A, Multiple)[[0, 2], [9, 1]]

3-197

3 Mathematics

To compute the eigenvectors of a matrix, use the linalg::eigenvectors function.
The function returns eigenvectors along with corresponding eigenvalues and
their multiplicities:
linalg::eigenvectors(A)[[0, 2, [matrix([[1], [-2], [1]])]], [9, 1, [matrix([[1], [5/2],
[1]])]]]

The linalg::eigenvalues function computes eigenvalues of a matrix by finding
the roots of the characteristic polynomial of that matrix. There is no general
method for solving polynomial equations of orders higher than 4. When trying
to compute eigenvalues of a large matrix, the solver can return complicated
solutions or solutions in the form of RootOf. Also, the solver can fail to find
any solutions for some matrices. For example, create the 6 6 Pascal matrix:
P := linalg::pascal(6)matrix([[1, 1, 1, 1, 1, 1], [1, 2, 3, 4, 5, 6], [1, 3, 6, 10, 15,
21], [1, 4, 10, 20, 35, 56], [1, 5, 15, 35, 70, 126], [1, 6, 21, 56, 126, 252]])

For that matrix, MuPAD finds eigenvalues in the form of RootOf:
eigenvalues := linalg::eigenvalues(P)RootOf(z^6 - 351*z^5 + 6084*z^4 -
13869*z^3 + 6084*z^2 - 351*z + 1, z)

3-198

Find Eigenvalues and Eigenvectors

You can find floating-point approximation of the result by using the float
command:
float(eigenvalues){0.003004389575, 0.06429432079, 0.4893388287,
2.04357378, 15.55347327, 332.8463154}

For more information about approximating eigenvalues and eigenvectors
numerically, see Numeric Eigenvalues and Eigenvectors.

3-199

3 Mathematics

Find Jordan Canonical Form of a Matrix
The Jordan canonical form of a square matrix is a block matrix in which each
block is a Jordan block. A Jordan block is a square matrix with an eigenvalue
of the original matrix on the main diagonal. A block also can contain 1s
on its first superdiagonal. Each Jordan block corresponds to a particular
eigenvalue. Single eigenvalues produce 1 1 Jordan blocks. If an n n square
matrix has n linearly independent eigenvectors, the Jordan form of that
matrix is a diagonal matrix with the eigenvalues on the main diagonal. For
example, create the 3 3 Pascal matrix P:
P := linalg::pascal(3)matrix([[1, 1, 1], [1, 2, 3], [1, 3, 6]])

The Jordan canonical form of the matrix P is a diagonal matrix with the
eigenvalues on its main diagonal:
linalg::eigenvalues(P); linalg::jordanForm(P){1, 4 - sqrt(15), sqrt(15) + 4}

matrix([[1, 0, 0], [0, 4 - sqrt(15), 0], [0, 0, sqrt(15) + 4]])

To find the Jordan canonical form of a matrix along with the nonsingular
similarity transformation matrix T that transforms the original matrix to
its Jordan form, use the All option:
[J, T] := linalg::jordanForm(P, All)[matrix([[1, 0, 0], [0, 4 - sqrt(15), 0], [0, 0,
sqrt(15) + 4]]), matrix([[-2, sqrt(15)/5 + 1, 1 - sqrt(15)/5], [-1, - (2*sqrt(15))/5 -
1, (2*sqrt(15))/5 - 1], [1, 1, 1]])]

3-200

Find Jordan Canonical Form of a Matrix

You can restore the original matrix from its Jordan form and the similarity
transformation:
simplify(T*J*T^(-1))matrix([[1, 1, 1], [1, 2, 3], [1, 3, 6]])

You cannot transform to a diagonal form matrices for which the number of
linearly independent eigenvectors is less than the matrix dimensions. For
example, the following matrix has the triple eigenvalue 2. The Jordan block
corresponding to that eigenvalue has 1s on its first superdiagonal:
A := matrix([[-6, 11, -15, -11], [11, -14, 22, 16], [-6, 7, -7, -7], [24, -32, 43, 34]]):
linalg::jordanForm(A)matrix([[1, 0, 0, 0], [0, 2, 1, 0], [0, 0, 2, 1], [0, 0, 0, 2]])

The 4 4 matrix A has a triple eigenvalue 2 and only two eigenvectors:
linalg::eigenvectors(A)[[1, 1, [matrix([[-1/3], [1/3], [-1/3], [1]])]], [2, 3,
[matrix([[0], [1], [0], [1]])]]]

3-201

3 Mathematics

3-202

Compute Matrix Exponentials

Compute Matrix Exponentials
You can use the exp function to compute matrix exponentials exp(A) =

sum(1/i!*A^i, i = 0..infinity) . For example, compute the
matrix exponential for the following square matrix, and then simplify the
result:
A := matrix([[0, 1], [-1, 0]]): simplify(exp(A*t))matrix([[cos(t), sin(t)], [-sin(t),
cos(t)]])

Now, compute the matrix exponential for the following matrix. Simplify the
result:
B := matrix(2, 2, [0, 2, 2, 0]): simplify(exp(B*x))matrix([[cosh(2*x), sinh(2*x)],
[sinh(2*x), cosh(2*x)]])

3-203

3 Mathematics

Compute Cholesky Factorization
The Cholesky factorization expresses a real symmetric and positive definite
matrix as a product of a lower triangular matrix L and its transpose LT: A =
LLT. For complex Hermitean (self-adjoint) positive definite matrices, A =
LLH where LH is the complex conjugate of the transpose of L (the Hermitean
transpose).

Create the 5 5 Pascal matrix. This matrix is symmetric and positive definite:
P := linalg::pascal(5)matrix([[1, 1, 1, 1, 1], [1, 2, 3, 4, 5], [1, 3, 6, 10, 15], [1, 4,
10, 20, 35], [1, 5, 15, 35, 70]])

To compute the Cholesky decomposition of a matrix, use the
linalg::factorCholesky function. The result is the following lower triangular
matrix:
L := linalg::factorCholesky(P)matrix([[1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [1, 2, 1, 0, 0],
[1, 3, 3, 1, 0], [1, 4, 6, 4, 1]])

Note linalg::factorCholesky works only with real symmetric matrices. To
compute the Cholesky decomposition of a complex Hermitean matrix, use
the numeric::factorCholesky function.

The product of the triangular matrix L and its transpose gives the original
matrix P:

3-204

Compute Cholesky Factorization

testeq(P = L*linalg::transpose(L))TRUE

Note MuPAD returns a lower triangular matrix as a result of Cholesky
factorization. MATLAB returns an upper triangular matrix, which is the
transpose of a result returned by MuPAD.

When MuPAD cannot determine whether a matrix is positive definite, the
linalg::factorCholesky function issues an error:
A := matrix([[a, b, c], [b, c, a], [c, a, b]]): linalg::factorCholesky(A)
Error: Cannot check whether the matrix component is positive.
[linalg::factorCholesky] If you know that the matrix is positive definite, you
can suppress this error. The NoCheck option suppresses the error and lets the
linalg::factorCholesky function continue the computation:
linalg::factorCholesky(A, NoCheck)matrix([[sqrt(a), 0, 0], [b/sqrt(a), sqrt(c -
b^2/a), 0], [c/sqrt(a), (a - (b*c)/a)/sqrt(c - b^2/a), sqrt(b - (a - (b*c)/a)^2/(c -
b^2/a) - c^2/a)]])

3-205

3 Mathematics

Compute LU Factorization
The LU factorization expresses anm n matrix A as follows: P*A = L*U. Here L
is an m m lower triangular matrix that contains 1s on the main diagonal, U is
an m n matrix upper triangular matrix, and P is a permutation matrix. To
compute the LU decomposition of a matrix, use the linalg::factorLU function.
For example, compute the LU decomposition of the following square matrix:
A := matrix([[0, 0, 1], [1, 2, 3], [0, 1, 2]]): [L, U, p] :=
linalg::factorLU(A)[matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), matrix([[1,
2, 3], [0, 1, 2], [0, 0, 1]]), [2, 3, 1]]

Instead of returning the permutation matrix P, MuPAD returns the list p with
numbers corresponding to row exchanges in the matrix A. For an n n matrix,
the list p represents the following permutation matrix with indices i and j
ranging from 1 to n:

P[(ij)] = Symbol::delta[p[i], j] = piecewise([j = p[i], 1], [j <> p[i], 0])

Using this expression, restore the permutation matrix P from the list p:
P := matrix(3, 3): for i from 1 to 3 do P[i, p[i]] := 1 end_for: Pmatrix([[0, 1,
0], [0, 0, 1], [1, 0, 0]])

More efficiently, compute the result of applying the permutation matrix to A
without restoring the permutation matrix itself:

3-206

Compute LU Factorization

PA := matrix(3, 3): for i from 1 to 3 do PA[i, 1..3] := A[p[i], 1..3] end_for:
PAmatrix([[1, 2, 3], [0, 1, 2], [0, 0, 1]])

The product of the lower triangular matrix L and the upper triangular
matrix U is the original matrix A with the rows interchanged according to the
permutation matrix P:
testeq(PA = L*U)TRUE

Now, compute the LU decomposition for the 3 2 matrix B:
B := matrix([[1, 2], [3, 4], [5, 6]]): [L, U, p] := linalg::factorLU(B)[matrix([[1, 0,
0], [3, 1, 0], [5, 2, 1]]), matrix([[1, 2], [0, -2], [0, 0]]), [1, 2, 3]]

The permutation matrix for this LU factorization shows that the order of the
rows does not change. Therefore, the product of the lower triangular matrix L
and the upper triangular matrix U gives the original matrix A:
testeq(B = L*U)TRUE

3-207

3 Mathematics

Compute QR Factorization
The QR factorization expresses an m n matrix A as follows: A = Q*R. Here
Q is an m m unitary matrix, and R is an m n upper triangular matrix. If the
components of A are real numbers, Q is an orthogonal matrix. To compute the
QR decomposition of a matrix, use the linalg::factorQR function. For example,
compute the QR decomposition of the 3 3 Pascal matrix:
P := linalg::pascal(3): [Q, R] := linalg::factorQR(P)[matrix([[sqrt(3)/3,
-sqrt(2)/2, sqrt(6)/6], [sqrt(3)/3, 0, -sqrt(6)/3], [sqrt(3)/3, sqrt(2)/2, sqrt(6)/6]]),
matrix([[sqrt(3), 2*sqrt(3), (10*sqrt(3))/3], [0, sqrt(2), (5*sqrt(2))/2], [0, 0,
sqrt(6)/6]])]

The product of Q and R gives the original 3 3 Pascal matrix:
testeq(P = Q*R)TRUE

Also, you can perform the QR factorization for matrices that contain complex
values. In this case, the matrix Q is unitary:
B := matrix([[I, -1], [1, I]]): [Q, R] := linalg::factorQR(B)[matrix([[(sqrt(2)*I)/2,
-sqrt(2)/2], [sqrt(2)/2, (sqrt(2)*I)/2]]), matrix([[sqrt(2), -sqrt(2)*I], [0,
2*sqrt(2)]])]

Again, the product of Q and R gives the original matrix B:

3-208

Compute QR Factorization

testeq(B = Q*R)TRUE

3-209

3 Mathematics

Compute Determinant Numerically
To compute the determinant of a square matrix numerically, use the
numeric::det function. For example, compute the determinant of the 5 5
Pascal matrix:
numeric::det(linalg::pascal(5))1.0

When you use numeric functions, the result can be extremely sensitive to
roundoff errors. For example, the determinant of a Pascal matrix of any size is
1. However, if you use the numeric::det function to compute the determinant
of a 25 25 Pascal matrix, you get the following incorrect result:
numeric::det(linalg::pascal(15))1.000043957

When computing determinants numerically, you can use the HardwareFloats
and SoftwareFloats options to employ the hardware or software float
arithmetic, respectively. (You can use the short names for these options:
Hard and Soft.)

When you use the HardwareFloats option, MuPAD converts all input data
to hardware floating-point numbers, and passes the data for processing by
compiled C code outside of the MuPAD session. Then, the results get back
into the MuPAD session. Hardware arithmetic often allows you to perform
computations much faster than software arithmetic, which uses the MuPAD
kernel for performing computations.

The precision of hardware arithmetic is limited to about 15 digits. By default,
the numeric::det function uses the HardwareFloats option. The function
switches to software arithmetic under one or more of the following conditions:

• You use the SoftwareFloats option or the MinorExpansion option
explicitly.

• The current value of DIGITS is larger than 15.

3-210

Compute Determinant Numerically

• The input data or computed data involves numbers that are larger than
10308 or smaller than 10- 308. Hardware floats cannot represent such
numbers.

The precision of hardware and software arithmetic can differ. Therefore,
the results obtained with the HardwareFloats and SoftwareFloats options
also can differ. For example, compute the determinant of the 25 25 Pascal
matrix using each of the options. Both numeric results are several orders
larger than the correct answer because of the roundoff errors. However,
the result obtained using software arithmetic is several orders closer to the
correct answer:
P := linalg::pascal(25): detP := linalg::det(P): float(detP); numeric::det(P,
SoftwareFloats); numeric::det(P, HardwareFloats)1.0

1669339685.0

1.039468525e15

Another example of numerically ill-conditioned matrices is the Hilbert
matrices. For example, create the 20 20 Hilbert matrix, compute its
determinant symbolically, and then approximate the result numerically:
H := linalg::hilbert(15): detH := linalg::det(H): float(detH)1.058542743e-124

Now, use the numeric::det function to compute the determinant numerically:
numeric::det(H)-3.822215463e-121

3-211

3 Mathematics

The numeric result obtained with the SoftwareFloats option is closer to
the correct result:
numeric::det(linalg::hilbert(15), SoftwareFloats)3.277553006e-123

To prevent the conversion of input data to floating-point numbers while using
the numeric::det function, use the Symbolic option. This option allows you to
compute the determinant exactly (without roundoff errors). For matrices over
particular rings and fields, the determinant computed by numeric::det with
the Symbolic option can differ from the determinant computed by linalg::det.
The reason is that linalg::det performs computations over the component
domain of the input matrix. The numeric::det function with the Symbolic
option always performs computations over the field of arbitrary MuPAD
expressions. For example, create the following matrix over the domain
Dom::IntegerMod(5):
A := Dom::Matrix(Dom::IntegerMod(5))([[1, 2], [3,
4]])Dom::Matrix(Dom::IntegerMod(5))([[1, 2], [-2, -1]])

The linalg::det function computes the determinant over the component
domain Dom::IntegerMod(5):
linalg::det(A)3 mod 5

The numeric::det function with the Symbolic option computes the
determinant of the following matrix instead of the original matrix A:
expr(A)array(1..2, 1..2, [[1, 2], [3, 4]])

3-212

Compute Determinant Numerically

The determinant of this matrix is an integer number:
numeric::det(A, Symbolic)-2

The numeric::det function switches to the Symbolic option under one or more
of the following conditions:

• You use the Symbolic option explicitly.

• The input data contains symbolic objects.

3-213

3 Mathematics

Compute Eigenvalues and Eigenvectors Numerically
When computing eigenvalues and eigenvectors of some matrices symbolically,
you can get a long result in a form that is not suitable for further
computations. For example, the linalg::eigenvectors function returns the
following results for eigenvalues and eigenvectors of the 3 3 Hilbert matrix:
H := linalg::hilbert(3): eigen :=
linalg::eigenvectors(H)[[6559/(32400*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) +
(129287/1458000 + (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)
+ 23/45, 1, [matrix([[- 6559/(3375*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (48*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))/5
+ 8*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3) +
23/45)^2 - 2113/450], [45913/(13500*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (84*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))/5
- (32*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3) +
23/45)^2)/3 + 5066/675], [1]])]], [23/45 - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)/2
- 6559/(64800*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))
- (sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/2,
1, [matrix([[(24*sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/5
+ 6559/(6750*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (24*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))/5
+ 8*((sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/2
+ 6559/(64800*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (129287/1458000

3-214

Compute Eigenvalues and Eigenvectors Numerically

+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)/2 - 23/45)^2
- 2113/450], [- (42*sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/5
- 45913/(27000*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (42*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))/5
- (32*((sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/2
+ 6559/(64800*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)/2 -
23/45)^2)/3 + 5066/675], [1]])]], [23/45 - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)/2
- 6559/(64800*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))
+ (sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/2, 1,
[matrix([[- (24*sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/5
+ 6559/(6750*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) + (24*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))/5
+ 8*((sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/2
- 6559/(64800*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)/2 + 23/45)^2
- 2113/450], [(42*sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/5
- 45913/(27000*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (42*(129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))/5
- (32*((sqrt(3)*(6559/(32400*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000

3-215

3 Mathematics

+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3))*I)/2
- 6559/(64800*(129287/1458000 +
(sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)) - (129287/1458000
+ (sqrt(29933)*sqrt(69120000)*I)/69120000)^(1/3)/2 + 23/45)^2)/3 +
5066/675], [1]])]]]

3-216

Compute Eigenvalues and Eigenvectors Numerically

3-217

3 Mathematics

Numeric approximation of the result returned by the symbolic
linalg::eigenvectors function gives a shorter answer that contains complex
numbers:
float(eigen)[[1.408318927 + (- 1.084202172e-19*I), 1.0, [matrix([[2.558147015
+ (- 1.575682167e-18*I)], [1.422413022 + 1.522668397e-18*I], [1.0]])]],
[0.002687340356 + 5.421010862e-20*I, 1.0, [matrix([[0.1853704181
+ (- 4.33680869e-19*I)], [- 1.036411196 + 8.67361738e-19*I], [1.0]])]],
[0.1223270659 + 5.421010862e-20*I, 1.0, [matrix([[- 0.8435174328 + (-
4.33680869e-19*I)], [0.8139981738 + 8.67361738e-19*I], [1.0]])]]]

If you need simple (though approximate) eigenvalues and eigenvectors of
the Hilbert matrix in further computations, use numeric methods from
the beginning. To approximate eigenvalues and eigenvectors of a matrix
numerically, use the numeric::eigenvectors function. The function returns
eigenvalues, eigenvectors, and residues (estimated errors for the numerical
eigenvalues):
[eigenvalues, eigenvectors, residues] :=
numeric::eigenvectors(H)[[1.408318927, 0.1223270659, 0.002687340356],
matrix([[0.827044927, -0.5474484307, -0.1276593297], [0.4598639044,

3-218

Compute Eigenvalues and Eigenvectors Numerically

0.5282902351, 0.7137468858], [0.3232984352, 0.6490066589,
-0.6886715317]]), [4.317754261e-16, 3.213231541e-16, 7.71731031e-17]]

Small residue values indicate that roundoff errors do not significantly affect
the results. To suppress the computation of the residues, use the NoResidues
option:
numeric::eigenvectors(H, NoResidues)[[1.408318927, 0.1223270659,
0.002687340356], matrix([[0.827044927, -0.5474484307, -0.1276593297],
[0.4598639044, 0.5282902351, 0.7137468858], [0.3232984352, 0.6490066589,
-0.6886715317]]), NIL]

3-219

3 Mathematics

If you want to compute only eigenvalues of a matrix, use the
numeric::eigenvalues function:
numeric::eigenvalues(H)[1.408318927, 0.1223270659, 0.002687340356]

When computing eigenvalues and eigenvectors numerically, you can use
the HardwareFloats and SoftwareFloats options to employ hardware
or software float arithmetic, respectively. For information about these
options, see the Numeric Determinant section. For more details, see the
numeric::eigenvectors and numeric::eigenvalues help pages.

3-220

Compute Factorizations Numerically

Compute Factorizations Numerically

In this section...

“Cholesky Decomposition” on page 3-221

“LU Decomposition” on page 3-222

“QR Decomposition” on page 3-224

“Singular Value Decomposition” on page 3-229

For numeric factorization functions, you can use the HardwareFloats,
SoftwareFloats and Symbolic options. For information about these options,
see the Numeric Determinant section. For more details, see the help pages of
the numeric functions provided for each particular factorization function.

Cholesky Decomposition
The Cholesky decomposition of a Hermitean (self-adjoint) positive definite
matrix is a product of a lower triangular matrix L and its Hermitean transpose
LH: A = LLH. The Hermitean transpose of a matrix is the complex conjugate of
its transpose. For real symmetric positive definite matrices, A = LLT, where
LT is the transpose of L.

The linalg library in MuPAD does not support the symbolic Cholesky
factorization of complex matrices. You can perform the Cholesky factorization
of such matrices numerically by using the numeric::factorCholesky function.
For example, create the following 2 2 matrix:
A := matrix([[sin(1), I], [-I, exp(2)]])matrix([[sin(1), I], [-I, exp(2)]])

First, try to compute the Cholesky decomposition of that matrix by using the
symbolic linalg::factorCholesky function. The returned error message says
that the function accepts only symmetric matrices:
L := linalg::factorCholesky(A) Error: A symmetric matrix is expected.
[linalg::factorCholesky] Although the linalg::factorCholesky does not compute

3-221

3 Mathematics

the Cholesky decomposition of that matrix, you can compute the factorization
by using the numeric::factorCholesky function. You can prevent the
conversion of data to floating-point numbers and, therefore, get the symbolic
result by using the Symbolic option:
L := numeric::factorCholesky(A, Symbolic)matrix([[sqrt(sin(1)), 0],
[-I/sqrt(sin(1)), sqrt(exp(2) - 1/sin(1))]])

The product of the triangular matrix L and its Hermitean transpose gives
the original matrix A:
testeq(A = L*transpose(conjugate(L)))TRUE

LU Decomposition
LU factorization expresses an m n matrix A as a product of a lower triangular
matrix L and an upper triangular matrix U: A = LU. Also, LU decomposition
can involve a row permutation matrix: PA = LU. To compute the LU
decomposition of a matrix numerically, use the numeric::factorLU function.
For example, create the following 4 4 Toeplitz matrix:
T := linalg::toeplitz(4, [1, 2, 3, 4, 5])matrix([[3, 4, 5, 0], [2, 3, 4, 5], [1, 2, 3, 4],
[0, 1, 2, 3]])

Use the numeric::factorLU function to compute the LU decomposition of the
matrix T numerically:

3-222

Compute Factorizations Numerically

[L, U, p] := numeric::factorLU(T)[matrix([[1.0, 0, 0, 0], [0, 1.0, 0, 0],
[0.3333333333, 0.6666666667, 1.0, 0], [0.6666666667, 0.3333333333, 0, 1.0]]),
matrix([[3.0, 4.0, 5.0, 0], [0, 1.0, 2.0, 3.0], [0, 0, 0, 2.0], [0, 0, 0, 4.0]]), [1, 4, 3, 2]]

Instead of returning the permutation matrix P, MuPAD returns the list p with
numbers corresponding to row exchanges in a matrix T. For an n n matrix,
the list p represents the following permutation matrix with indices i and j
ranging from 1 to n:

P[(ij)] = Symbol::delta[p[i], j] = piecewise([j = p[i], 1], [j <> p[i], 0])

Using this expression, restore the permutation matrix P from the list p:
P := matrix(4, 4): for i from 1 to 4 do P[i, p[i]] := 1 end_for: Pmatrix([[1, 0, 0,
0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]])

More efficiently, compute the result of applying the permutation matrix to A
without restoring the permutation matrix itself:
PT := matrix(4, 4): for i from 1 to 4 do PT[i, 1..4] := T[p[i], 1..4] end_for:
PTmatrix([[3, 4, 5, 0], [0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]])

3-223

3 Mathematics

Within floating-point precision, the product of the lower triangular matrix
L and the upper triangular matrix U is the original matrix A with the rows
interchanged according to the permutation matrix P:
float(PT) = L*Umatrix([[3.0, 4.0, 5.0, 0], [0, 1.0, 2.0, 3.0], [1.0, 2.0, 3.0, 4.0],
[2.0, 3.0, 4.0, 5.0]]) = matrix([[3.0, 4.0, 5.0, 0], [0, 1.0, 2.0, 3.0], [1.0, 2.0, 3.0,
4.0], [2.0, 3.0, 4.0, 5.0]])

The symbolic LU factorization function uses a different pivoting strategy than
the numeric LU factorization function. Therefore, the symbolic function can
return different results for the same matrix:
linalg::factorLU(T)[matrix([[1, 0, 0, 0], [2/3, 1, 0, 0], [1/3, 2, 1, 0], [0, 3, 0, 1]]),
matrix([[3, 4, 5, 0], [0, 1/3, 2/3, 5], [0, 0, 0, -6], [0, 0, 0, -12]]), [1, 2, 3, 4]]

QR Decomposition
The QR factorization expresses an m n matrix A as follows: A = Q*R. Here
Q is an m m unitary matrix, and R is an m n upper triangular matrix. If the
components of A are real numbers, Q is an orthogonal matrix. To compute

3-224

Compute Factorizations Numerically

the QR decomposition of a matrix numerically, use the numeric::factorQR
function. For example, create the following 3 3 Vandermonde matrix:
V := linalg::vandermonde([2, PI, 1/3])matrix([[1, 2, 4], [1, PI, PI^2], [1, 1/3,
1/9]])

When computing the QR decomposition of that matrix symbolically, you get
the following long result:
[Q, R] := linalg::factorQR(V)[matrix([[sqrt(3)/3, -(PI/3 - 11/9)/sqrt((PI/3 + 4/9)^2
+ ((2*PI)/3 - 7/9)^2 + (PI/3 - 11/9)^2), -(PI^2/3 + ((PI/3 - 11/9)*((37*PI)/27
+ (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) -
71/27)/sqrt((PI^2/3 + ((PI/3 + 4/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 -
392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) + 34/27)^2 + ((2*PI^2)/3 + (((2*PI)/3 -
7/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 +
62/27) - 37/27)^2 + (PI^2/3 + ((PI/3 - 11/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3
- 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) - 71/27)^2)], [sqrt(3)/3, ((2*PI)/3 -
7/9)/sqrt((PI/3 + 4/9)^2 + ((2*PI)/3 - 7/9)^2 + (PI/3 - 11/9)^2), ((2*PI^2)/3 +
(((2*PI)/3 - 7/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 -
(14*PI)/9 + 62/27) - 37/27)/sqrt((PI^2/3 + ((PI/3 + 4/9)*((37*PI)/27 + (7*PI^2)/9
- (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) + 34/27)^2 + ((2*PI^2)/3
+ (((2*PI)/3 - 7/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 -
(14*PI)/9 + 62/27) - 37/27)^2 + (PI^2/3 + ((PI/3 - 11/9)*((37*PI)/27 + (7*PI^2)/9
- (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) - 71/27)^2)], [sqrt(3)/3,
-(PI/3 + 4/9)/sqrt((PI/3 + 4/9)^2 + ((2*PI)/3 - 7/9)^2 + (PI/3 - 11/9)^2), -(PI^2/3
+ ((PI/3 + 4/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 -
(14*PI)/9 + 62/27) + 34/27)/sqrt((PI^2/3 + ((PI/3 + 4/9)*((37*PI)/27 + (7*PI^2)/9
- (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) + 34/27)^2 + ((2*PI^2)/3
+ (((2*PI)/3 - 7/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3
- (14*PI)/9 + 62/27) - 37/27)^2 + (PI^2/3 + ((PI/3 - 11/9)*((37*PI)/27 +
(7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) - 71/27)^2)]]),
matrix([[sqrt(3), (sqrt(3)*(PI + 7/3))/3, (sqrt(3)*(PI^2 + 37/9))/3], [0, sqrt((PI/3
+ 4/9)^2 + ((2*PI)/3 - 7/9)^2 + (PI/3 - 11/9)^2), -((37*PI)/27 + (7*PI^2)/9 -
(2*PI^3)/3 - 392/81)/sqrt((PI/3 + 4/9)^2 + ((2*PI)/3 - 7/9)^2 + (PI/3 - 11/9)^2)],
[0, 0, sqrt((PI^2/3 + ((PI/3 + 4/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 -

3-225

3 Mathematics

392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) + 34/27)^2 + ((2*PI^2)/3 + (((2*PI)/3
- 7/9)*((37*PI)/27 + (7*PI^2)/9 - (2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9
+ 62/27) - 37/27)^2 + (PI^2/3 + ((PI/3 - 11/9)*((37*PI)/27 + (7*PI^2)/9 -
(2*PI^3)/3 - 392/81))/((2*PI^2)/3 - (14*PI)/9 + 62/27) - 71/27)^2)]])]

3-226

Compute Factorizations Numerically

3-227

3 Mathematics

To get a shorter answer, approximate this result by floating-point numbers:
[Q, R] := float([Q, R])[matrix([[0.5773502692, 0.08763169824, -0.8117803595],
[0.5773502692, 0.6592065645, 0.4817814566], [0.5773502692, -0.7468382628,
0.3299989029]]), matrix([[1.732050808, 3.160949992, 8.071769864], [0,
1.997275809, 6.773652774], [0, 0, 1.544537491]])]

You can get the same result faster by calling the numeric factorization
function from the beginning:
[Q, R] := numeric::factorQR(V)[matrix([[0.5773502692, 0.08763169824,
-0.8117803595], [0.5773502692, 0.6592065645, 0.4817814566], [0.5773502692,
-0.7468382628, 0.3299989029]]), matrix([[1.732050808, 3.160949992,
8.071769864], [0, 1.997275809, 6.773652774], [0, 0, 1.544537491]])]

Within floating-point precision, the product of Q and R gives the original 3 3
Vandermonde matrix V:

3-228

Compute Factorizations Numerically

float(V) = Q*Rmatrix([[1.0, 2.0, 4.0], [1.0, 3.141592654, 9.869604401], [1.0,
0.3333333333, 0.1111111111]]) = matrix([[1.0, 2.0, 4.0], [1.0, 3.141592654,
9.869604401], [1.0, 0.3333333333, 0.1111111111]])

Singular Value Decomposition
The singular value decomposition expresses an m n matrix A as follows: A
= USVH. Here S is an m n diagonal matrix with singular values of A on its
diagonal. The columns of the m m matrix U are the left singular vectors
for corresponding singular values. The columns of the n n matrix V are the
right singular vectors for corresponding singular values. VH is the Hermitean
transpose (the complex conjugate of the transpose) of V.

To compute the singular value decomposition of a matrix, use the numeric::svd
or numeric::singularvectors function. These two functions are equivalent. For
example, compute the singular value decomposition of the following matrix:
A := matrix([[9, 4], [6, 8], [2, 7]]): svd :=
numeric::svd(A)[matrix([[0.6104993556, 0.7174382767, 0.3355187863],
[0.6645912432, -0.2336056545, -0.7097512787], [0.4308236486,
-0.6562855456, 0.6194192978]]), [14.9359164, 5.188294644],
matrix([[0.6925379522, 0.7213814419], [0.7213814419, -0.6925379522]]),
[8.704148513e-14, 8.704148513e-14, 6.039716306e-31], [4.352074257e-14,
4.352074257e-14]]

3-229

3 Mathematics

Instead of returning the diagonal matrix S, MuPAD returns the list d of the
diagonal elements of that matrix:
d := svd[2][14.9359164, 5.188294644]

You can restore the matrix S from that list:
S := matrix(3, 2, d, Diagonal)matrix([[14.9359164, 0], [0, 5.188294644], [0, 0]])

The numeric::svd function also computes the residues resU and resV for the
numeric singular vectors. The residues are the estimated errors for the
numerical matrices U and V:
res_U = svd[4]; res_V = svd[5]res_U = [8.704148513e-14, 8.704148513e-14,
6.039716306e-31]

res_V = [4.352074257e-14, 4.352074257e-14]

3-230

Compute Factorizations Numerically

Small residue values indicate that roundoff errors do not significantly affect
the results. To suppress the computation of the residues, use the NoResidues
option:
svd := numeric::svd(A, NoResidues)[matrix([[0.6104993556, 0.7174382767,
0.3355187863], [0.6645912432, -0.2336056545, -0.7097512787],
[0.4308236486, -0.6562855456, 0.6194192978]]), [14.9359164, 5.188294644],
matrix([[0.6925379522, 0.7213814419], [0.7213814419, -0.6925379522]]),
NIL, NIL]

Within the floating-point precision, the product of U, S, and the Hermitean
transpose of V returns the original matrix A:
[U, d, V, res_U, res_V] := svd: A = U*S*conjugate(transpose(V))matrix([[9, 4],
[6, 8], [2, 7]]) = matrix([[9.0, 4.0], [6.0, 8.0], [2.0, 7.0]])

3-231

3 Mathematics

Mathematical Constants Available in MuPAD

In this section...

“Special Real Numbers” on page 3-232

“Infinities” on page 3-233

“Boolean Constants” on page 3-233

“Special Values” on page 3-233

“Special Sets” on page 3-234

Special Real Numbers
MuPAD provides symbolic representations of the following commonly used
special real numbers. You can perform exact computations that include the
constants. Also, you can get floating-point approximations with the current
precision DIGITS by using the float function.

E Euler number (exponential
constant, base of natural
logarithm) exp(1) approx

2.718281828

PI π ≈ 3.141592653

EULER Euler-Mascheroni constant
limit(sum(1/i, i = 1..n) - ln(n), n =
infinity) approx 0.5772156649

CATALAN Catalan constant
sum((-1)^i/(2*i + 1)^2, i = 0..infinity)
approx 0.9159655941

3-232

Mathematical Constants Available in MuPAD

Infinities
MuPAD provides the symbolic representations for real and complex infinities.
Many functions accept infinities as their arguments. For example, you can
use infinities when computing sums, limits, integrals, and so on. Also, you
can perform arithmetical operations with infinities. MuPAD can return
infinities as results of computations:

infinity Real positive infinity

complexInfinity Infinite point of the complex plane

RD_INF Real positive infinity used in
floating-point intervals

RD_NINF Real negative infinity used in
floating-point intervals

Boolean Constants
MuPAD uses a three-state logic with the Boolean constants TRUE, FALSE,
and UNKNOWN. You can use these constants in computations. MuPAD can
return these constants as a result of computations.

Special Values
The following objects in MuPAD represent special values. You can use these
special values in computations. MuPAD can return these values as a result
of computations:

3-233

3 Mathematics

I
Imaginary unit sqrt(-1) .

NIL Null object of the domain DOM_NIL.
MuPAD uses this object to indicate
missing objects explicitly.

null() Null (void) object of the domain
DOM_NULL. This object does not
produce any visible output. MuPAD
removes this object from data
structures (such as sequences, lists,
sets, and so on).

undefined Undefined value.

RD_NAN Undefined value used in
floating-point intervals. If you
use typeset mode, MuPAD displays

this value as RD_NAN in
output regions.

FAIL Failure object of the domain
DOM_FAIL.

Special Sets
MuPAD provides the following predefined sets and lets you use them in
computations. For example, you can use these predefined sets to compute
intersections, differences, and unions, or to make assumptions. MuPAD can
use these sets to return results of computations:

C_
The set C_ of complex numbers

N_ The set of positive integers:
Z_ intersect Dom::Interval([1],

infinity)

Q_
The set Q_ of rational numbers

3-234

Mathematical Constants Available in MuPAD

R_
The set R_ of real numbers

Z_
The set Z_ of integers

3-235

3 Mathematics

Special Functions Available in MuPAD

In this section...

“Dirac and Heaviside Functions” on page 3-236

“Gamma Functions” on page 3-236

“Zeta Function and Polylogarithms” on page 3-237

“Airy and Bessel Functions” on page 3-237

“Exponential and Trigonometric Integrals” on page 3-238

“Error Functions and Fresnel Functions” on page 3-238

“Hypergeometric, Meijer G, and Whittaker Functions” on page 3-238

“Elliptic Integrals” on page 3-239

“Lambert W Function (omega Function)” on page 3-239

Dirac and Heaviside Functions
The following MuPAD functions represent the Dirac δ-distribution and the
Heaviside (step) function. You can use these functions as input for your
computations. MuPAD can return results in terms of these functions:

dirac Dirac δ-function

heaviside Heaviside function

Gamma Functions
MuPAD provides the following functions to represent the β-function,
Γ-function, and other related special functions. You can use these functions
as input for your computations. MuPAD can return results in terms of these
functions:

beta β-function

binomial Binomial expression

binomial(m,n)

3-236

Special Functions Available in MuPAD

gamma Γ-function

igamma Incomplete Γ-function

lngamma Logarithmic Γ-function

psi Polygamma function

Zeta Function and Polylogarithms
The following MuPAD functions represent the Riemann ζ-function and the
related dilogarithm and polylogarithm special functions. You can use these
functions as input for your computations. MuPAD can return results in terms
of these functions:

dilog Dilogarithm function

polylog Polylogarithm function

zeta Riemann ζ-function

Airy and Bessel Functions
The following MuPAD functions represent the Bessel and Airy special
functions. You can use these functions as an input for your computations.
MuPAD can return results in terms of these functions:

airyAi Airy function Ai

airyBi Airy function Bi

besselI Modified Bessel function of the first
kind

besselJ Bessel function of the first kind

besselK Modified Bessel function of the
second kind

besselY Bessel function of the second kind

3-237

3 Mathematics

Exponential and Trigonometric Integrals
The following MuPAD functions represent exponential and trigonometric
integrals. You can use these functions as an input for your computations.
MuPAD can return results in terms of these functions:

Ci Cosine integral

Chi Hyperbolic cosine integral

Ei Exponential integral

Si Sine integral

Ssi Shifted sine integral

Shi Hyperbolic sine integral

Error Functions and Fresnel Functions
The following MuPAD functions represent the error functions (integrals of
Gaussian distribution) and Fresnel functions. You can use these functions
as input for your computations. MuPAD can return results in terms of these
functions:

erf Error function

erfc Complementary error function

erfi Imaginary error function

inverf Inverse of error function

inverfc Inverse of complementary error
function

fresnelC Fresnel cosine integral function

fresnelS Fresnel sine integral function

Hypergeometric, Meijer G, and Whittaker Functions
The following MuPAD functions represent the hypergeometric function, the
more general Meijer G function, and related functions. You can use these
functions as input for your computations. MuPAD can return results in terms
of these functions:

3-238

Special Functions Available in MuPAD

hypergeom Hypergeometric function

kummerU Confluent hypergeometric
KummerU function

meijerG Meijer G function

whittakerM Whittaker’s M function

whittakerW Whittaker’s W function

Elliptic Integrals
The following MuPAD functions represent the elliptic integrals of different
kinds. You can use these functions as input for your computations. MuPAD
can return results in terms of these functions:

ellipticK Complete elliptic integral of the first
kind

ellipticCK Complementary complete elliptic
integral of the first kind

ellipticF Incomplete elliptic integral of the
first kind

ellipticE Elliptic integral of the second kind

ellipticCE Complementary complete elliptic
integral of the second kind

ellipticPi Elliptic integral of the third kind

ellipticCPi Complementary complete elliptic
integral of the third kind

ellipticNome Elliptic nome

Lambert W Function (omega Function)
The lambertW function represents the solutions of the equation yey = x. You
can use the function as input for your computations. MuPAD can return
results in terms of this function.

3-239

3 Mathematics

Floating-Point Arguments and Function Sensitivity

In this section...

“Use Symbolic Computations When Possible” on page 3-241

“Increase Precision” on page 3-241

“Approximate Parameters and Approximate Results” on page 3-243

“Plot Special Functions” on page 3-245

Particular choices of parameters can reduce some special functions to simpler
special functions, elementary functions, or numbers. Nevertheless, for most
parameters MuPAD returns the symbolic notation of a special function. In
such cases, you can approximate the value of a special function numerically.
To approximate a special function numerically, use the float command or call
the special function with floating-point arguments.

When approximating the value of a special function numerically, remember
that floating-point results can be extremely sensitive to numeric precision.
Also, floating-point results are prone to roundoff errors. The following
approaches can help you recognize and avoid incorrect results:

• When possible, use symbolic computations. Switch to floating-point
arithmetic only if you cannot obtain symbolic results. See “Use Symbolic
Computations When Possible” on page 3-241.

• Numeric computations are sensitive to the DIGITS environment variable
that determines the numeric working precision. Increase the precision of
numeric computations, and check if the result changes significantly. See
“Increase Precision” on page 3-241.

• Compute the value of a special function symbolically, and then approximate
the result numerically. Also, compute the value of a special function using
the floating-point parameters. Significant difference in these two results
indicates that one or both approximations are incorrect. See “Approximate
Parameters and Approximate Results” on page 3-243.

• Plot the function. See “Plot Special Functions” on page 3-245.

3-240

Floating-Point Arguments and Function Sensitivity

Use Symbolic Computations When Possible
By default, MuPAD performs computations in exact symbolic form. For
example, standard mathematical constants have their own symbolic
representations in MuPAD. Using these representations, you can keep the
exact value of the constant throughout your computations. You always can
find a numeric approximation of a constant by using the float function:
pi := float(PI)3.141592654

Avoid unnecessary conversions to floating-point numbers. A floating-point
number approximates a constant; it is not the constant itself. Using this
approximation, you can get incorrect results. For example, the heaviside
special function returns different results for the sine of π and the sine of
10-digit floating-point approximation of π:
heaviside(sin(PI)), heaviside(sin(pi))1/2, 0.0

Increase Precision
The Riemann hypothesis states that all nontrivial zeros of the Riemann Zeta

function zeta(z) have the same real part Re(z) = 1/2 . To locate
possible zeros of the Zeta function, plot its absolute value abs(zeta(1/2 +

I*y)) . The following plot shows the first three nontrivial roots of

the Zeta function zeta(1/2 + y*I) :
plot(abs(zeta(1/2 + I*y)), y = 0..30, AxesTitles = ["y", "|zeta|"])

3-241

3 Mathematics

Use the numeric solver to approximate the first three zeros of this Zeta
function:
numeric::solve(zeta(1/2 + I*y), y = 13..15), numeric::solve(zeta(1/2 + I*y),
y = 20..22), numeric::solve(zeta(1/2 + I*y), y = 24..26){14.13472514},
{21.02203964}, {25.01085758}

Now, consider the same function, but slightly increase the real part:

zeta(1000000001/2000000000 + I*y) . According to the
Riemann hypothesis, this function does not have a zero for any real value y.
By default, MuPAD uses 10 significant decimal digits for computations that
involve floating-point numbers. When you use the numeric::solve solver with
the default number of digits, the solver finds the following (nonexisting) zero
of the Zeta function:
numeric::solve(zeta(1000000001/2000000000 + I*y), y = 14..15){14.13472514}

3-242

Floating-Point Arguments and Function Sensitivity

Increasing the numbers of digits shows that the result is incorrect. The Zeta

function zeta(1000000001/2000000000 + I*y) does not
have a zero at 14 < y < 15:
DIGITS:=15: numeric::solve(zeta(1000000001/2000000000 + I*y), y = 14..15){}

delete DIGITS;

Approximate Parameters and Approximate Results
Bessel functions with half integer indices return exact symbolic expressions.
Approximating these expressions by floating-point numbers, you can get very
unstable results. For example, the exact symbolic expression for the following
Bessel function is:
B := besselJ(53/2, PI)(351*sqrt(2)*(119409675/PI^4 -
20300/PI^2 - 315241542000/PI^6 + 445475704038750/PI^8 -
366812794263762000/PI^10 + 182947881139051297500/PI^12 -
55720697512636766610000/PI^14 + 10174148683695239020903125/PI^16
- 1060253389142977540073062500/PI^18 +
57306695683177936040949028125/PI^20 -
1331871030107060331702688875000/PI^22 +
8490677816932509614604641578125/PI^24 + 1))/PI^2

3-243

3 Mathematics

Use the float command to approximate this expression numerically:
float(B)-2854.225191

Now, call the Bessel function with the floating-point parameter. Significant
difference in these two approximations indicates that one or both results
are incorrect:
besselJ(53/2, float(PI))6.900145607e-23

Increase the numeric working precision to obtain more accurate
approximations:
DIGITS:= 45: float(B); besselJ(53/2,
float(PI))0.000000000000000000000069001456077208746595732766545218860103835187

3-244

Floating-Point Arguments and Function Sensitivity

0.000000000000000000000069001456069172794165785003948591349704494668

delete DIGITS;Now you can see that using the floating-point parameter to
compute the Bessel function produces the correct result (within working
precision). Approximation of the exact symbolic expression for that Bessel
function returns the wrong result because of numerical instability.

Plot Special Functions
Plotting the function can help you recognize incorrect floating-point
approximations. For example, the numeric approximation of the following
Bessel function returns:
B := besselJ(53/2, PI): float(B)-2854.225191

Plot the function besselJ(x, PI) for the values of x around 53/2. The
function plot shows that the floating-point approximation is incorrect:
plot(besselJ(x, PI), x = 26..27)

3-245

3 Mathematics

Sometimes, to see that the floating-point approximation is incorrect, you must
zoom the particular parts of the function plot. For example, the numeric
solver finds the unexpected zero of the Zeta function:
numeric::solve(zeta(1000000001/2000000000 + I*y), y = 14..15){14.13472514}

To investigate whether the Zeta function actually has a zero at that
point or whether the result appears because of the roundoff error, plot
the absolute value of Zeta function abs(zeta(1000000001/2000000000 +

I*y)) .
plot(abs(zeta(1000000001/2000000000 + I*y)), y = 0..30, AxesTitles = ["y",
"|zeta|"])

3-246

Floating-Point Arguments and Function Sensitivity

To see more details of the function plot near the possible zero, zoom the plot.
To see that the numeric result is incorrect, enlarge that part of the function
plot beyond the numeric working precision, and then reevaluate the plot.
When you zoom and reevaluate, MuPAD recalculates the part of the function
plot with the increased numeric precision.

Note When zooming, MuPAD does not automatically reevaluate the function
plot.

To get accurate results after zooming the plot, use the Recalculate button

. After zooming and reevaluating the plot, you can see that the function
does not have a zero at that interval.

3-247

3 Mathematics

3-248

Integral Transforms

Integral Transforms

In this section...

“Fourier and Inverse Fourier Transforms” on page 3-249

“Laplace and Inverse Laplace Transforms” on page 3-252

Fourier and Inverse Fourier Transforms
There are several commonly used conventions for defining Fourier transforms.
MuPAD defines the Fourier transform (FT) as:
F(w) = c*int(f(t)*exp(I*s*w*t), t=(-infinity)..(infinity))

Here c and s are the parameters of the Fourier transform. By default,
c = 1 and s = -1. Pref::fourierParameters lets you specify other values for
these parameters. For the inverse Fourier transform (IFT), MuPAD uses
the following definition:
f(t) = abs(s)/(2*PI*c)*int(F(w)*exp(‘{-i s w t}‘), w=-infinity..infinity)

To compute the Fourier transform of an arithmetical expression, use the
fourier function. For example, compute the Fourier transforms of the
following exponential expression and the Dirac delta distribution:
fourier(exp(-t^2), t, w), fourier(dirac(t), t, w)sqrt(PI)*exp(-w^2/4), 1

3-249

3 Mathematics

If you know the Fourier transform of an expression, you can find the original
expression or its mathematically equivalent form by computing the inverse
Fourier transform. To compute the inverse Fourier transform, use the ifourier
function. For example, find the original exponential expression and the Dirac
delta distribution:
ifourier(PI^(1/2)*exp(-w^2/4), w, t), ifourier(1, w, t)exp(-t^2), dirac(t)

Suppose, you compute the Fourier transform of an expression, and then
compute the inverse Fourier transform of the result. In this case, MuPAD
can return an expression that is mathematically equivalent to the original
one, but presented in a different form. For example, compute the Fourier
transforms of the following trigonometric expressions:
Cosine := fourier(cos(t), t, w); Sine := fourier(sin(t^2), t, w)PI*(dirac(w - 1) +
dirac(w + 1))

(sqrt(2)*sqrt(PI)*(cos(w^2/4) - sin(w^2/4)))/2

Now, compute the inverse Fourier transforms of the resulting expressions
Cosine and Sine. The results differ from the original expressions:
invCosine := ifourier(Cosine, w, t); invSine := ifourier(Sine, w, t)exp(-t*I)/2
+ exp(t*I)/2

(sqrt(2)*(sqrt(2)*sqrt(PI)*(cos(t^2) + sin(t^2)) - sqrt(2)*sqrt(PI)*(cos(t^2) -
sin(t^2))))/(4*sqrt(PI))

3-250

Integral Transforms

Simplifying the resulting expressions invCosine and invSine gives the
original expressions:
simplify(invCosine), simplify(invSine)cos(t), sin(t^2)

Besides arithmetical expressions, the fourier and ifourier functions also
accept matrices of arithmetical expressions. For example, compute the
Fourier transform of the following matrix:
A := matrix(2, 2, [exp(-t^2), t*exp(-t^2), t^2*exp(-t^2), t^3*exp(-t^2)]):
fourier(A, t, w)matrix([[sqrt(PI)*exp(-w^2/4), -(sqrt(PI)*w*exp(-w^2/4)*I)/2],
[(sqrt(PI)*exp(-w^2/4))/2 - (sqrt(PI)*w^2*exp(-w^2/4))/4, -
(3*sqrt(PI)*w*exp(-w^2/4)*I)/4 + (sqrt(PI)*w^3*exp(-w^2/4)*I)/8]])

The fourier and ifourier functions let you evaluate the transforms of an
expression or a matrix at a particular point. For example, evaluate the
Fourier transform of the matrix A for the values w = 0 and w = 2*x:
fourier(A, t, 0); fourier(A, t, 2*x)matrix([[sqrt(PI), 0], [sqrt(PI)/2, 0]])

3-251

3 Mathematics

matrix([[sqrt(PI)*exp(-x^2), -sqrt(PI)*x*exp(-x^2)*I], [(sqrt(PI)*exp(-x^2))/2
- sqrt(PI)*x^2*exp(-x^2), - (3*sqrt(PI)*x*exp(-x^2)*I)/2 +
sqrt(PI)*x^3*exp(-x^2)*I]])

If MuPAD cannot compute the Fourier transform of an expression, it returns
an unresolved transform:
fourier(f(t), t, w)fourier(f(t), t, w)

If MuPAD cannot compute the inverse Fourier transform of an expression, it
returns the result in terms of an unresolved direct Fourier transform:
ifourier(F(w), w, t)fourier(F(w), w, -t)/(2*PI)

Laplace and Inverse Laplace Transforms
The Laplace transform is defined as follows:
F(s) = int(f(t)*exp(‘{-s t}‘), t=0..(infinity))

The inverse Laplace transform is defined by a contour integral in the complex
plane:

3-252

Integral Transforms

f(t) = (1)/(2*PI*‘i‘)*int(F(s)*exp(s*t), s=c-I*infinity..‘c+i‘*infinity)

where c is a real value. To compute the Laplace transform of an arithmetical
expression, use the laplace function. For example, compute the Laplace
transform of the following expression:
tsine := laplace(t*sin(a*t), t, s)(2*a*s)/(a^2 + s^2)^2

To compute the original expression from its Laplace transform, perform the
inverse Laplace transform. To compute the inverse Laplace transform, use
the ilaplace function. For example, compute the inverse Laplace transform of
the resulting expression tsine:
ilaplace(tsine, s, t)t*sin(a*t)

Suppose, you compute the Laplace transform of an expression, and then
compute the inverse Laplace transform of the result. In this case, MuPAD
can return an expression that is mathematically equivalent to the original
one, but presented in a different form. For example, compute the Laplace
transforms of the following expression:
L := laplace(t*ln(t), t, s)1/s^2 - EULER/s^2 - ln(s)/s^2

3-253

3 Mathematics

Now, compute the inverse Laplace transform of the resulting expression L.
The result differs from the original expression:
invL := ilaplace(L, s, t)t - EULER*t + t*(EULER + ln(t) - 1)

Simplifying the expression invL gives the original expression:
simplify(invL)t*ln(t)

Besides arithmetical expressions, the laplace and ilaplace functions also
accept matrices of arithmetical expressions. For example, compute the
Laplace transform of the following matrix:
A := matrix(2, 2, [1, t, t^2, t^3]): laplace(A, t, s)matrix([[1/s, 1/s^2], [2/s^3,
6/s^4]])

When computing a transform of an expression, you can use assumptions on
mathematical properties of the arguments. For example, compute the Laplace
transform of the Dirac delta distribution:
d := laplace(dirac(t - t_0), t, s) assuming t_0 >=0exp(-s*t_0)

Restore the Dirac delta distribution from the resulting expression d:
ilaplace(d, s, t) assuming t_0 >=0dirac(t - t_0)

3-254

Integral Transforms

The laplace function provides the transforms for some special functions. For
example, compute the Laplace transforms of the following Bessel functions:
laplace(besselJ(0, t), t, s); laplace(besselJ(1, t), t, s); laplace(besselJ(1/2, t), t,
s)1/sqrt(s^2 + 1)

1/(sqrt(s^2 + 1)*(s + sqrt(s^2 + 1)))

-(sqrt(2)*(1/sqrt(s - I) - 1/sqrt(s + I))*I)/2

The laplace and ilaplace functions let you evaluate the transforms of an
expression or a matrix at a particular point. For example, evaluate the
Laplace transform of the following expression for the value s = 10:
laplace(t*exp(-t), t, 10)1/121

Now, evaluate the inverse Laplace transform of the following expression for
the value t = x + y:
ilaplace(1/(1 + s)^2, s, x + y)exp(- x - y)*(x + y)

3-255

3 Mathematics

If MuPAD cannot compute the Laplace transform or the inverse Laplace
transform of an expression, it returns an unresolved transform:
laplace(f(t), t, s)laplace(f(t), t, s)

ilaplace(F(s), s, t)ilaplace(F(s), s, t)

3-256

Z-Transforms

Z-Transforms
The Z-transform of the function F(z) is defined as follows:
F(z) = sum(f(k)/z^k, k = 0..infinity)

If R is a positive number, such that the function F(Z) is analytic on and
outside the circle |z| = R, then the inverse Z-transform is defined as follows:

You can consider the Z-transform as a discrete equivalent of the Laplace
transform.

To compute the Z-transform of an arithmetical expression, use the ztrans
function. For example, compute the Z-transform of the following expression:
S := ztrans(sinh(n), n, z)(z*sinh(1))/(z^2 - 2*cosh(1)*z + 1)

If you know the Z-transform of an expression, you can find the original
expression or a mathematically equivalent form by computing the inverse
Z-transform. To compute the inverse Z-transform, use the iztrans function.
For example, compute the inverse Z-transform of the expression S:
iztrans(S, z, n)sinh(n)

3-257

3 Mathematics

Suppose, you compute the Z-transform of an expression, and then compute
the inverse Z-transform of the result. In this case, MuPAD can return
an expression that is mathematically equivalent to the original one, but
presented in a different form. For example, compute the Z-transform of the
following expression:
C := ztrans(exp(n), n, z)z/(z - exp(1))

Now, compute the inverse Z-transform of the resulting expression C. The
result differs from the original expression:
invC := iztrans(C, z, n)exp(1)*(exp(-1)*exp(n) - exp(-1)*kroneckerDelta(n, 0)) +
kroneckerDelta(n, 0)

Simplifying the resulting expression invC gives the original expression:
simplify(invC)exp(n)

Besides arithmetical expressions, the ztrans and iztrans functions also accept
matrices of arithmetical expressions. For example, compute the Z-transform
of the following matrix:
A := matrix(2, 2, [1, n, n + 1, 2*n + 1]): ZA := ztrans(A, n, z)matrix([[z/(z - 1),
z/(z - 1)^2], [z/(z - 1) + z/(z - 1)^2, z/(z - 1) + (2*z)/(z - 1)^2]])

3-258

Z-Transforms

Computing the inverse Z-transform of ZA gives the original matrix A:
iztrans(ZA, z, n)matrix([[1, n], [n + 1, 2*n + 1]])

The ztrans and iztrans functions let you evaluate the transforms of an
expression or a matrix at a particular point. For example, evaluate the
Z-transform of the following expression for the value z = 2:
ztrans(1/n!, n, 2)sqrt(exp(1))

Evaluate the inverse Z-transform of the following expression for the value
n = 10:
iztrans(z/(z - exp(x)), z, 10)exp(10*x)

If MuPAD cannot compute the Z-transform or the inverse Z-transform of an
expression, it returns an unresolved transform:
ztrans(f(n), n, z)ztrans(f(n), n, z)

iztrans(F(z), z, n)iztrans(F(z), z, n)

3-259

3 Mathematics

Discrete Fourier Transforms
The discrete Fourier transform (DFT) is an equivalent of the Fourier
transform for discrete data. The one-dimensional discrete Fourier transform
of N data elements L = [L1, …, LN] is defined as the list F = [F1, …, FN], such
that

F[k]=sum(L[j]*exp(‘-‘*2*PI*I*(j-1)*(k-1)*‘/‘*N), j=1..N), k=1,Symbol::hellip,N

The inverse discrete Fourier transform is defined as the list L of the following
elements:

L[j]= _divide(1,N)*_outputSequence(sum(F[k]*exp(2*PI*I*(j-1)*(k-1)*‘/‘*N),
k=1..N), ‘‘), j = 1,Symbol::hellip, N

MuPAD uses a fast Fourier transform (FFT) algorithm to compute the discrete
and the inverse discrete Fourier transforms. For any N, the computing
costs are O(Nlog2(N)). To compute the discrete Fourier transforms, use the
following functions:

• numeric::fft to compute the Fourier transform

• numeric::invfft to compute the inverse Fourier transform

These functions accept lists (domain type DOM_LIST), arrays (domain
type DOM_ARRAY), hardware floating-point arrays (domain type
DOM_HFARRAY), and matrices (category Cat::Matrix). The accepted data
structures (except for lists) can be one- or multidimensional. You can use
arbitrary arithmetical expressions as entries.

3-260

Discrete Fourier Transforms

The discrete Fourier transform is often used in signal processing. It allows
you to decompose a signal into a set of periodic signals with different
frequencies and to analyze those frequencies. Suppose, you have a discrete set
of values of a signal sampled at a fixed rate. The signal might be periodic,
but the noise effectively hides the period. For example, the following data
list represents such a signal:
f1 := 150: f2 := 300: data := [sin(f1*2*PI*t/1000) + sin(f2*2*PI*t/1000) +
10*(frandom() - 1/2) $t = 0..1000]:When you plot the data, the signal seems
random. The noise effectively hides the two main frequencies of the signal:
plot(plot::Listplot(data, t = 0..1000), AxesTitles = ["Time", "Amplitude"],
YAxisTitleOrientation = Vertical, XAxisTitleAlignment = Center,
YAxisTitleAlignment = Center)

To prove that the signal has a strong periodic component and to find the main
frequencies, compute the discrete Fourier transform of the signal:
fft := abs(numeric::fft(data)):The plot of fft shows four peaks. The peaks
correspond to the two main frequencies of the original signal (f1 = 150
and f2 = 300):

3-261

3 Mathematics

plot(plot::Listplot(fft, f = 0..1000), AxesTitles = ["Frequency", "Power"],
YAxisTitleOrientation = Vertical, XAxisTitleAlignment = Center,
YAxisTitleAlignment = Center)

The numeric::fft and numeric::invfft functions accept options. Use the
Symbolic option to prevent the conversion of your data to floating-point
numbers. For example, create a list of the following exact values:
exactData := [sin(1/3*2*PI*n/10) $n = 0..3][0, sin(PI/15), sin((2*PI)/15),
(sqrt(2)*sqrt(5 - sqrt(5)))/4]

Compute the discrete Fourier transform keeping the data in its exact symbolic
form:
fft := numeric::fft(exactData, Symbolic)[sin(PI/15) + sin((2*PI)/15) +
(sqrt(2)*sqrt(5 - sqrt(5)))/4, - sin(PI/15)*I - sin((2*PI)/15) + (sqrt(2)*sqrt(5

3-262

Discrete Fourier Transforms

- sqrt(5))*I)/4, sin((2*PI)/15) - sin(PI/15) - (sqrt(2)*sqrt(5 - sqrt(5)))/4,
sin(PI/15)*I - sin((2*PI)/15) - (sqrt(2)*sqrt(5 - sqrt(5))*I)/4]

Compute the inverse discrete Fourier transform of the resulting list. Use
the numeric::invfft function with the Symbolic to prevent the data from the
conversion to floating-point values:
numeric::invfft(fft, Symbolic)[0, sin(PI/15), sin((2*PI)/15), (sqrt(2)*sqrt(5
- sqrt(5)))/4]

Also, you can clean results by removing very small terms. To discard all entries

of the result with absolute values smaller than 10^(1/DIGITS)
times the maximal absolute value of all operands of the result, use the Clean
option. This option also removes tiny imaginary terms that often appear as
a result of roundoff effects. For example, without the Symbolic option, the
inverse Fourier transform from the previous example returns the following
list of floating-point values:
numeric::invfft(fft)[0.0, 0.2079116908 + 1.162988943e-17*I, 0.4067366431,
0.5877852523 + (- 1.162988943e-17*I)]

When you use the Clean option, the numeric::invfft function discards small
terms that appear in the second and fourth entries of the resulting list:

3-263

3 Mathematics

numeric::invfft(fft, Clean)[0.0, 0.2079116908, 0.4067366431, 0.5877852523]

3-264

Use Custom Patterns for Transforms

Use Custom Patterns for Transforms

In this section...

“Add New Patterns” on page 3-265

“Overwrite Existing Patterns” on page 3-266

Add New Patterns
MuPAD provides common patterns for integral and Z-transform computations
and the corresponding inverse transforms computations. Also, the system lets
you add your own patterns for the transforms.

Note Note MuPAD does not save custom patterns permanently. To use a
custom pattern, add it in the current MuPAD session.

The following example demonstrates how to add the pattern for the Fourier
transform of the function f(t). By default, there is no pattern for f(t). The
fourier function returns the unresolved transform:
fourier(f(t), t, s)fourier(f(t), t, s)

Suppose, you want to add the pattern F(s) for the Fourier transform of
the function f(t). To add a new pattern for the Fourier transform, use the
fourier::addpattern function:
fourier::addpattern(f(t), t, s, F(s)):Now, when you compute the Fourier
transform of f(t), MuPAD returns F(s):
fourier(f(t), t, s)F(s)

MuPAD can use the new pattern indirectly:
fourier(sin(t^2) + f(10*t + 33), t, s)(F(s/10)*exp((33*s*I)/10))/10 +
(sqrt(2)*sqrt(PI)*(cos(s^2/4) - sin(s^2/4)))/2

3-265

3 Mathematics

When you add a pattern for the Fourier transform, MuPAD does not
automatically add the pattern for the inverse Fourier transform:
ifourier(F(s), s, t)fourier(F(s), s, -t)/(2*PI)

To add the corresponding pattern for the inverse Fourier transform, use the
ifourier::addpattern function. For example, add the pattern f(t) for the
inverse Fourier transform of F(s):
ifourier::addpattern(F(s), s, t, f(t)): ifourier(F(s), s, t)f(t)

Using the same method, you can add your own patterns for the Laplace
transform, inverse Laplace transform, Z-transform, and inverse Z-transform.
Use the following functions to add patterns for computing these transforms:

• laplace::addpattern to add a pattern for computing the Laplace transform

• ilaplace::addpattern to add a pattern for computing the inverse Laplace
transform

• ztrans::addpattern to add a pattern for computing the Z-transform

• iztrans::addpattern to add a pattern for computing the inverse Z-transform

Overwrite Existing Patterns
You can introduce a new transform pattern for the expression for which
MuPAD already has a pattern. In this case, the system replaces the standard
existing pattern with the new one. For example, the Laplace transform of the
hyperbolic sine function has a standard pattern implemented in MuPAD:

3-266

Use Custom Patterns for Transforms

laplace(sinh(t), t, s)1/(s^2 - 1)

Suppose, you want to change this pattern. Use the laplace::addpattern
function to replace the existing standard pattern with your custom pattern:
laplace::addpattern(sinh(t), t, s, 1/2*(1/(s - 1) - 1/(s + 1))): laplace(sinh(t), t,
s)1/(2*(s - 1)) - 1/(2*(s + 1))

This change is temporary, it only affects the current MuPAD session.

3-267

3 Mathematics

Supported Distributions
MuPAD supports standard continuous and discrete distributions. The system
associates the following routines with each implemented distribution:

• A probability density function (PDF) for continuous distributions or
probability function (PF) for discrete distributions

• A cumulative distribution function (CDF)

• An inverse cumulative distribution function (quantile function)

• A random number generator

The following continuous distributions are available in MuPAD.

Name PDF CDF Quantile
Random
Generator

β-distribution stats::betaPDF stats::betaCDF stats::betaQuantilestats::betaRandom

Cauchy
distribution

stats::cauchyPDFstats::cauchyCDFstats::cauchyQuantilestats::cauchyRandom

χ2-distribution stats::chisquarePDFstats::chisquareCDFstats::chisquareQuantilestats::chisquareRandom

Erlang
distribution

stats::erlangPDFstats::erlangCDFstats::erlangQuantilestats::erlangRandom

Exponential
distribution

stats::exponentialPDFstats::exponentialCDFstats::exponentialQuantilestats::exponentialRandom

F-distribution stats::fPDF stats::fCDF stats::fQuantilestats::fRandom

γ-distribution stats::gammaPDFstats::gammaCDFstats::gammaQuantilestats::gammaRandom

Logistic
distribution

stats::logisticPDFstats::logisticCDFstats::logisticQuantilestats::logisticRandom

Lognormal
distribution

stats::lognormalPDFstats::lognormalCDFstats::lognormalQuantilestats::lognormalRandom

Normal
distribution

stats::normalPDFstats::normalCDFstats::normalQuantilestats::normalRandom

Student’s
t-distribution

stats::tPDF stats::tCDF stats::tQuantilestats::tRandom

3-268

Supported Distributions

Name PDF CDF Quantile
Random
Generator

Uniform
distribution

stats::uniformPDFstats::uniformCDFstats::uniformQuantilestats::uniformRandom

Weibull
distribution

stats::weibullPDFstats::weibullCDFstats::weibullQuantilestats::weibullRandom

The following discrete distributions are available in MuPAD.

Name PF CDF Quantile
Random
Generator

Binomial
distribution

stats::binomialPFstats::binomialCDFstats::binomialQuantilestats::binomialRandom

Empirical
distribution

stats::empiricalPFstats::empiricalCDFstats::empiricalQuantilestats::empiricalRandom

Distribution
of a Finite
Sample
Space

stats::finitePF stats::finiteCDFstats::finiteQuantilestats::finiteRandom

Geometric
Distribution

stats::geometricPFstats::geometricCDFstats::geometricQuantilestats::geometricRandom

Hypergeometric
Distribution

stats::hypergeometricPFstats::hypergeometricCDFstats::hypergeometricQuantilestats::hypergeometricRand

Poisson
Distribution

stats::poissonPFstats::poissonCDFstats::poissonQuantilestats::poissonRandom

3-269

3 Mathematics

Import Data
If you have an external data set and want to analyze it in MuPAD, import
the data to the MuPAD session. To import an ASCII data file to the MuPAD
session, use the import::readdata function. Suppose, you want to analyze the
world population growth and compare it to the US population growth between
1970 and 2000. The text file "WorldPopulation" contains the required data.
To be able to work with the data in MuPAD, import the contents of the file
line-by-line by using the import::readdata function. The function returns the
following nested list:
data := import::readdata("WorldPopulation")[[year, world(thousands),
US(thousands), AnnualRateWorld, AnnualRateUS], [1970, 3711962, 205052,
2.07, 1.26], [1971, 3789539, 207661, 1.99, 1.07], [1972, 3865804, 209896,
1.94, 0.95], [1973, 3941551, 211909, 1.87, 0.91], [1974, 4016056, 213854,
1.79, 0.99], [1975, 4088612, 215973, 1.73, 0.95], [1976, 4159763, 218035,
1.71, 1.01], [1977, 4231510, 220239, 1.68, 1.1], [1978, 4303134, 222585,
1.71, 1.18], [1979, 4377497, 225055, 1.7, 0.98], [1980, 4452548, 227726,
1.7, 0.96], [1981, 4528882, 229966, 1.75, 0.91], [1982, 4608682, 232188,
1.75, 0.87], [1983, 4690278, 234307, 1.7, 0.89], [1984, 4770468, 236348, 1.7,
0.91], [1985, 4852052, 238466, 1.71, 0.89], [1986, 4935874, 240651, 1.73,
0.91], [1987, 5022023, 242804, 1.71, 0.94], [1988, 5108860, 245021, 1.69,
1.12], [1989, 5195713, 247342, 1.68, 1.33], [1990, 5283687, 250132, 1.57,
1.33], [1991, 5367185, 253493, 1.56, 1.3], [1992, 5451672, 256894, 1.5, 1.21],
[1993, 5534138, 260255, 1.46, 1.18], [1994, 5615311, 263436, 1.44, 1.16],
[1995, 5696677, 266557, 1.4, 1.2], [1996, 5776857, 269667, 1.35, 1.17], [1997,
5855087, 272912, 1.31, 1.15], [1998, 5932091, 276115, 1.28, 1.02], [1999,
6008255, 279295, 1.25, 1.01], [2000, 6083550, 282172, 1.24, 0.94]]

3-270

Import Data

You can convert the resulting nested list to other data structures, For
example, represent the imported data as a sample. A sample is a collection of
statistical data in the form of a matrix. To convert the nested list of imported
data to a sample, use the stats::sample function:
s := stats::sample(data) year world(thousands) US(thousands)
AnnualRateWorld AnnualRateUS 1970 3711962 205052 2.07 1.26 1971
3789539 207661 1.99 1.07 1972 3865804 209896 1.94 0.95 1973 3941551
211909 1.87 0.91 1974 4016056 213854 1.79 0.99 1975 4088612 215973 1.73
0.95 1976 4159763 218035 1.71 1.01 1977 4231510 220239 1.68 1.1 1978
4303134 222585 1.71 1.18 1979 4377497 225055 1.7 0.98 1980 4452548 227726
1.7 0.96 1981 4528882 229966 1.75 0.91 1982 4608682 232188 1.75 0.87 1983
4690278 234307 1.7 0.89 1984 4770468 236348 1.7 0.91 1985 4852052 238466
1.71 0.89 1986 4935874 240651 1.73 0.91 1987 5022023 242804 1.71 0.94
1988 5108860 245021 1.69 1.12 1989 5195713 247342 1.68 1.33 1990 5283687
250132 1.57 1.33 1991 5367185 253493 1.56 1.3 1992 5451672 256894 1.5 1.21
1993 5534138 260255 1.46 1.18 1994 5615311 263436 1.44 1.16 1995 5696677
266557 1.4 1.2 1996 5776857 269667 1.35 1.17 1997 5855087 272912 1.31
1.15 1998 5932091 276115 1.28 1.02 1999 6008255 279295 1.25 1.01 2000
6083550 282172 1.24 0.94 The first row in that sample contains text. The

3-271

3 Mathematics

statistical functions cannot work with the text. Before you start analyzing
the data, delete the first row:
s := stats::sample::delRow(s, 1) 1970 3711962 205052 2.07 1.26 1971 3789539
207661 1.99 1.07 1972 3865804 209896 1.94 0.95 1973 3941551 211909 1.87
0.91 1974 4016056 213854 1.79 0.99 1975 4088612 215973 1.73 0.95 1976
4159763 218035 1.71 1.01 1977 4231510 220239 1.68 1.1 1978 4303134
222585 1.71 1.18 1979 4377497 225055 1.7 0.98 1980 4452548 227726 1.7
0.96 1981 4528882 229966 1.75 0.91 1982 4608682 232188 1.75 0.87 1983
4690278 234307 1.7 0.89 1984 4770468 236348 1.7 0.91 1985 4852052 238466
1.71 0.89 1986 4935874 240651 1.73 0.91 1987 5022023 242804 1.71 0.94
1988 5108860 245021 1.69 1.12 1989 5195713 247342 1.68 1.33 1990 5283687
250132 1.57 1.33 1991 5367185 253493 1.56 1.3 1992 5451672 256894 1.5 1.21
1993 5534138 260255 1.46 1.18 1994 5615311 263436 1.44 1.16 1995 5696677
266557 1.4 1.2 1996 5776857 269667 1.35 1.17 1997 5855087 272912 1.31 1.15
1998 5932091 276115 1.28 1.02 1999 6008255 279295 1.25 1.01 2000 6083550
282172 1.24 0.94 The MuPAD statistical functions accept the resulting sample
because it contains only numeric data. Now, you can analyze the sample. For
example, compute the correlation between the US population and total world
population stored in the second and third columns of the sample. Use the float
function to approximate the result:
float(stats::correlation(s, 2, 3))0.9972426119

The correlation coefficient is close to 1. Therefore, the world population
data and the US population data are linearly related. Now, compute the
correlation coefficient for the population growth rates stored in the fourth and
fifth columns of the sample. In this case, you can omit the float function.
MuPAD returns a floating-point result because the input data contains
floating-point numbers:
stats::correlation(s, 4, 5)-0.2127844699

The correlation coefficient indicates that the data for the world population
growth rates and the data for the US population growth rates are not linearly
related.

3-272

Store Statistical Data

Store Statistical Data
MuPAD offers various data containers, such as lists, arrays, tables, and so
on, to store and organize data. For details about the MuPAD data structures,
see Working with Data Structures. Although, you can use any of these data
containers to store statistical data, the following containers serve best. The
reason is that many functions of the “Statistics” library accept these data
containers as input parameters:

• Lists

• Statistical samples (stats::sample). This data structure is specifically
designed for statistical data.

Using sets, tables, arrays, vectors, and matrices is less convenient. You
cannot use these data containers as input parameters for most functions of
the “Statistics” library. To use these functions on data stored in sets, tables,
arrays, vectors, or matrices, transfer the data to lists or statistical samples.

3-273

3 Mathematics

Compute Measures of Central Tendency
Measures of central tendency locate a distribution of data along an appropriate
scale. There are several standard measures of central tendency. Knowing
the properties of a particular data sample (such as the origin of the data
sample and possible outliers and their values) can help you choose the most
useful measure of central tendency for that data sample. MuPAD provides
the following functions for calculating the measures of central tendency:

• The stats::modal function returns the most frequent value of a data sample
and the number of occurrences of that value.

• The stats::mean function calculates the arithmetic mean

(1)/(n) * sum(x[i], i = 1..n) of a data sample x1, x2, ..., xn.

• The stats::quadraticMean function calculates the quadratic mean

sqrt(1/(n)*sum(x[i]^2, i = 1..n)) of a data sample x1,
x2, ..., xn.

• The stats::median function returns the element xn of a sorted data sample
x1, x2, ..., x2n.

• The stats::geometricMean function calculates the geometric mean

(x[1]*x[2]* ‘...‘ * x[n])^(1/n) of a data sample x1, x2, ..., xn.

• The stats::harmonicMean function calculates the harmonic mean

(1/n*sum(1/x[i], i))^(-1) of a data sample x1, x2, ..., xn.

The arithmetic average is a simple and popular measure of central tendency.
It serves best for data samples that do not have significant outliers.
Unfortunately, outliers (for example, data-entry errors or glitches) exist in
almost all real data. The arithmetic average and quadratic mean are sensitive
to these problems. One bad data value can move the average away from the
center of the rest of the data by an arbitrarily large distance. For example,
create the following two lists of entries that contain only one outlier. The
outlier is equal to 100 in the first list and to 1 in the second list:

3-274

Compute Measures of Central Tendency

L := [1, 1, 1, 1, 1, 100.0]: S := [100, 100, 100, 100, 100, 1.0]:The stats::modal
function shows that the most frequent entry of the first list is 1. The most
frequent entry of the second list is 100. A most frequent entry appears in
each list five times:
modalL = stats::modal(L); modalS = stats::modal(S)modalL = ([1], 5)

modalS = ([100], 5)

If the value of the outlier is large, the outlier can significantly move the mean
and the quadratic mean away from the center:
meanL = stats::mean(L); quadraticMeanL = stats::quadraticMean(L)meanL =
17.5

quadraticMeanL = 40.83503398

Large outliers affect the geometric mean and the harmonic mean less than
they affect the simple arithmetic average. Nevertheless, both geometric and
harmonic means are also not completely resistant to outliers:
geometricMeanL = stats::geometricMean(L); harmonicMeanL =
stats::harmonicMean(L)geometricMeanL = 2.15443469

harmonicMeanL = 1.19760479

3-275

3 Mathematics

If the value of the outlier is small, the impact on the mean of a data set is
less noticeable. Quadratic mean can effectively mitigate the impact of a few
small outliers:
meanS = stats::mean(S); quadraticMeanS = stats::quadraticMean(S)meanS =
83.5

quadraticMeanS = 91.28800578

The small outlier significantly affects the geometric and harmonic means
computed for the list S:
geometricMeanS = stats::geometricMean(S); harmonicMeanS =
stats::harmonicMean(S)geometricMeanS = 46.41588834

harmonicMeanS = 5.714285714

The median is usually resistant to both large and small outliers:
medianL = stats::median(L); medianS = stats::median(S)medianL = 1

medianS = 100

For data samples that contain an even number of elements, MuPAD can use
two definitions of the median. By default, stats::median returns the n/2-th
element of a sorted data sample:
z := [1, 1, 1, 100, 100, 100]: medianZ = stats::median(z)medianZ = 1

3-276

Compute Measures of Central Tendency

When you use the Averaged option, stats::median returns the arithmetic
average of the two central elements of a sorted data sample:
z := [1, 1, 1, 100, 100, 100]: medianZ = stats::median(z, Averaged)medianZ
= 101/2

Nevertheless, the median is not always the best choice for measuring
central tendency of a data sample. For example, the following data sample
distribution has a step in the middle:
z := [1, 1, 1, 2, 100, 100, 100]: medianZ = stats::median(z)medianZ = 2

3-277

3 Mathematics

Compute Measures of Dispersion
The measures of dispersion summarize how spread out (or scattered) the data
values are on the number line. MuPAD provides the following functions for
calculating the measures of dispersion. These functions describe the deviation
from the arithmetic average (mean) of a data sample:

• The stats::variance function calculates the variance

1/(n-1)*sum((x[i]-‘x‾‘)^2, i=1..n) , where

‘x‾‘ is the arithmetic mean of the data sample x1, x2, ..., xn.

• The stats::stdev function calculates the standard deviation

sqrt(1/(n-1)*sum((x[i]-‘x‾‘)^2, i=1..n)) ,

where ‘x‾‘ is the arithmetic average of the data sample x1, x2,
..., xn.

• The stats::meandev function calculates the mean deviation

1/n * sum(abs(x[(i)]-‘x‾‘), i=1..n) , where

‘x‾‘ is the arithmetic average of the data sample x1, x2, ..., xn.

The standard deviation and the variance are popular measures of dispersion.
The standard deviation is the square root of the variance and has the
desirable property of being in the same units as the data. For example, if the
data is in meters, the standard deviation is also in meters. Both the standard
deviation and the variance are sensitive to outliers. A data value that is
separate from the body of the data can increase the value of the statistics by
an arbitrarily large amount. For example, compute the variance and the
standard deviation of the list x that contains one outlier:
L := [1, 1, 1, 1, 1, 1, 1, 1, 100.0]: variance = stats::variance(L); stdev =
stats::stdev(L)variance = 1089.0

stdev = 33.0

3-278

Compute Measures of Dispersion

The mean deviation is also sensitive to outliers. Nevertheless, the large
outlier in the list x affects the mean deviation less than it affects the variance
and the standard deviation:
meandev = stats::meandev(L)meandev = 19.55555556

Now, compute the variance, the standard deviation, and the mean deviation
of the list y that contains one small outlier. Again, the mean deviation is less
sensitive to the outlier than the other two measures:
S := [100, 100, 100, 100, 100, 100, 100, 100, 1.0]: variance = stats::variance(S);
stdev = stats::stdev(S); meandev = stats::meandev(S)variance = 1089.0

stdev = 33.0

meandev = 19.55555556

3-279

3 Mathematics

Compute Measures of Shape
The measures of shape indicate the symmetry and flatness of the distribution
of a data sample. MuPAD provides the following functions for calculating
the measures of shape:

• The stats::moment function that calculates the k-th moment

(1)/(n) * sum(fenced(x[(i)]-X)^(k), i=1..n) of the data
sample x1, x2, ..., xn centered around X.

• The stats::obliquity function that calculates the obliquity (skewness)

(1/n*sum((x[i]-‘x‾‘)^3, i=1..n))/(1/n*sum((x[i]-‘x‾‘)^2,

i=1..n)^(3/2)) , where ‘x‾‘ is the
arithmetic average (mean) of the data sample x1, x2, ..., xn.

• The stats::kurtosis function that calculates the kurtosis (excess)

1/n*sum((x[i]-‘x‾‘)^4, i=1..n)/(1/n*sum((x[i]-‘x‾‘)^2,

i=1..n)^2)-3 , where ‘x‾‘ is the
arithmetic average (mean) of the data sample x1, x2, ..., xn.

The stats::moment function enables you to compute the kth moment of a data
sample centered around an arbitrary value X. One of the popular measures in
descriptive statistics is a central moment. The kth central moment of a data
sample is the kth moment centered around the arithmetic average (mean) of
that data sample. The following statements are valid for any data sample:

• The zero central moment is always 1.

• The first central moment is always 0.

• The second central moment is equal to the variance computed by using
a divisor n, rather than n - 1 (available via the Population option of
stats::variance).

3-280

Compute Measures of Shape

For example, create the lists L and S as follows:
L := [1, 1, 1, 1, 1, 1, 1, 1, 100.0]: S := [100, 100, 100, 100, 100, 100, 100, 100,
1.0]:Calculate the arithmetic average of each list by using the stats::mean
function:
meanL := stats::mean(L); meanS := stats::mean(S)12.0

89.0

Calculate the first four central moments of the list L:
stats::moment(0, meanL, L), stats::moment(1, meanL, L), stats::moment(2,
meanL, L), stats::moment(3, meanL, L)1.0, 0.0, 968.0, 74536.0

The zero and first central moments are the same for any data sample. The
second central moment is the variance computed with the divisor n:
stats::variance(L, Population)968.0

Now, calculate the first four central moments of the list S:
stats::moment(0, meanS, S), stats::moment(1, meanS, S), stats::moment(2,
meanS, S), stats::moment(3, meanS, S)1.0, 0.0, 968.0, -74536.0

Again, the zero central moment is 1, the first central moment is 0, and the
second central moment is the variance computed with the divisor n:
stats::variance(S, Population)968.0

3-281

3 Mathematics

The obliquity (skewness) is a measure of the symmetry of a distribution. If the
distribution is close to symmetrical around its mean, the value of obliquity
is close to zero. Positive values of obliquity indicate that the distribution
function has a longer tail to the right of the mean. Negative values indicate
that the distribution function has a longer tail to the left of the mean. For
example, calculate the obliquity of the lists L and S:
stats::obliquity(L); stats::obliquity(S)2.474873734

-2.474873734

The kurtosis measures the flatness of a distribution. For normally distributed
data, the kurtosis is zero. Negative kurtosis indicates that the distribution
function has a flatter top than the normal distribution. Positive kurtosis
indicates that the peak of the distribution function is sharper than it is for the
normal distribution:
stats::kurtosis(-2, -1, -0.5, 0, 0.5, 1, 2), stats::kurtosis(-1, 0.5, 0, 0, 0, 0, 0.5,
1)-0.8333333333, 0.1606648199

3-282

Compute Covariance and Correlation

Compute Covariance and Correlation
If you have two or more data samples with an equal number of elements, you
can estimate how similar these data samples are. The most common measures
of similarity of two data samples are the covariance and the correlation.
MuPAD provides the following functions for computing the covariance and
the correlation of two data samples:

• The stats::covariance function calculates the covariance

1/(n-1)*sum((x[i]-‘x‾‘)*(y[i]-‘y‾‘),

i=1..n) . Here ‘x‾‘ is the

arithmetic average of the data sample x1, x2, ..., xn, and ‘y‾‘ is
the arithmetic average of the data sample y1, y2, ..., yn.

• The stats::correlation function calculates the linear (Bravais-Pearson)
correlation coefficient

sum((x[i]-‘x‾‘)(y[i]-‘y‾‘), i) /
sqrt(sum((x[i]-‘x‾‘)^2, i)*sum((y[i]-‘y‾‘)^2,

i)) . Here ‘x‾‘ is the arithmetic

average of the data sample x1, x2, ..., xn, and ‘y‾‘ is the
arithmetic average of the data sample y1, y2, ..., yn.

Create the lists x and y:
x := [1, 1, 0.1]: y := [1, 2, 0.1]:To estimate the similarity of these lists,
compute their covariance. For completely uncorrelated (nonsimilar) data, the
covariance is a small value. A positive covariance indicates that the data
change in the same direction (increases or decreases together). A negative
covariance indicates the data change in opposite directions. There are two
common definitions of the covariance. By default, the stats::covariance
function uses the definition with the divisor n - 1. To switch to the
alternative definition, use the Population option:
stats::covariance(x, y), stats::covariance(x, y, Population)0.42, 0.28

3-283

3 Mathematics

The covariance of a data sample with itself is the variance of that data sample:
stats::covariance(x, x) = stats::variance(x)0.27 = 0.27

The correlation of data samples indicates the degree of similarity of these
data samples. For completely uncorrelated data, the value of the correlation
(as well as the covariance) tends to 0. For correlated data that change in the
same direction, the correlation tends to 1. For correlated data that change in
the opposite directions, the correlation tends to -1. Compute the correlation of
x and y:
stats::correlation(x, y), stats::correlation(x, x), stats::correlation(x,
-x)0.8504394349, 1.0, -1.0

3-284

Handle Outliers

Handle Outliers
The outliers are data points located far outside the range of the majority
of the data. Glitches, data-entry errors, and inaccurate measurements can
produce outliers in real data samples. The outliers can significantly affect
the analysis of data samples. If you suspect that the data that you want to
analyze contains outliers, you can discard the outliers or replace them with
the values typical for that data sample.

Before you discard or replace the outliers, try to verify that they are actual
errors. The outliers can be a part of the correct data sample, and discarding
them can lead you to incorrect conclusions. If you cannot determine whether
the outliers are correct data or errors, the recommended strategy is to analyze
the data with the outliers and without them.

To discard outliers, use the stats::cutoff function. For example, discard the
outliers with the values smaller than the 1/10 quantile (10th percentile) and
larger than 9/10 quantile of the list x:
x := [1/100, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100]: stats::cutoff(x, 1/10)[1, 2, 3, 4, 5, 6, 7,
8, 9]

To replace the outliers with the value of a k-th quantile, use the
stats::winsorize function. In the list x, replace the values of the outliers with
the 10th and 90th percentiles:
stats::winsorize(x, 1/10)[1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9]

3-285

3 Mathematics

Bin Data
The stats::frequency function categorizes the numerical data into a number of
bins given by semiopen intervals (ai, bi]. This function returns a table with
the entries (rows) corresponding to the bins. Each entry shows the following
information:

• The number of the bin

• The interval defining the bin

• The number of data in the bin

• The data contained in the bin

The stats::frequency function enables you to specify the number of bins. By
default, stats::frequency categorizes the data into 10 bins. For example,
categorize the following data into 10 bins:
x := [-10.1, -1, 1.1, 3.5, 13, 0, -5.5, 0.5, 7.9, 15, 0.15, 6.7, 2, 9]:
stats::frequency(x)table(10 = [[12.49, 15.0], 2, [13, 15]], 9 = [[9.98, 12.49], 0, []],
8 = [[7.47, 9.98], 2, [7.9, 9]], 7 = [[4.96, 7.47], 1, [6.7]], 6 = [[2.45, 4.96], 1, [3.5]],
5 = [[-0.06, 2.45], 5, [0, 0.15, 0.5, 1.1, 2]], 4 = [[-2.57, -0.06], 1, [-1]], 3 = [[-5.08,
-2.57], 0, []], 2 = [[-7.59, -5.08], 1, [-5.5]], 1 = [[-infinity, -7.59], 1, [-10.1]])

Now, categorize the same data into 5 bins:

3-286

Bin Data

stats::frequency(x, 5)table(5 = [[9.98, 15.0], 2, [13, 15]], 4 = [[4.96, 9.98], 3,
[6.7, 7.9, 9]], 3 = [[-0.06, 4.96], 6, [0, 0.15, 0.5, 1.1, 2, 3.5]], 2 = [[-5.08, -0.06], 1,
[-1]], 1 = [[-infinity, -5.08], 2, [-10.1, -5.5]])

When creating the bins, you can specify the intervals. For example, divide
the data into two bins: one bin contains the numbers that are less or equal to
zero, and the other bin contains the numbers that are greater than zero:
stats::frequency(x, [[-infinity, 0], [0, infinity]])table(2 = [[0, infinity], 10, [0.15,
0.5, 1.1, 2, 3.5, 6.7, 7.9, 9, 13, 15]], 1 = [[-infinity, 0], 4, [-10.1, -5.5, -1, 0]])

For graphical interpretation of the data binning, see “Create Bar Charts,
Histograms, and Pie Charts” on page 3-292.

3-287

3 Mathematics

Create Scatter and List Plots
Scatter plots can help you identify the relationship between two data samples.
A scatter plot is a simple plot of one variable against another. For two discrete
data samples x1, x2, ..., xn and y1, y2, ..., yn, a scatter plot is a collection of
points with coordinates [x1, y1], [x2, y2], ..., [xn, yn]. To create a scatter plot in
MuPAD, use the plot::Scatterplot function. For example, create the scatter
plot for the following data samples x and y:
x := [0.25, 0.295, 0.473, 0.476, 0.512, 0.588, 0.629, 0.648, 0.722, 0.844]: y
:= [0.00102, 0.271, 0.378, 0.478, 0.495, 0.663, 0.68, 0.778, 0.948, 0.975]:
plot(plot::Scatterplot(x, y))

By default, the plot::Scatterplot function also displays a regression line. This
line shows the linear dependency that best fits the two data samples. To hide
the regression line, use the LinesVisible option:
plot(plot::Scatterplot(x, y, LinesVisible = FALSE))

3-288

Create Scatter and List Plots

Another plot that can help you identify the relationship between two discrete
data samples is a list plot. List plots are convenient for plotting one data
sample with equidistant x-values. They are also convenient for plotting
combined data samples, such as [[x1, y1], [x2, y2], ..., [xn, yn]]. If you have two
separate data samples, you can combine the data of these samples pairwise:
xy := [[x[i], y[i]] $ i = 1..10]:To create a list plot, use the plot::Listplot function:
plot(plot::Listplot(xy), AxesTitles = ["x", "y"])

3-289

3 Mathematics

By default, the plot::Listplot function connects adjacent points on the plot by
straight lines. To hide these connections, use the LinesVisible option:
plot(plot::Listplot(xy), AxesTitles = ["x", "y"], LinesVisible = FALSE)

3-290

Create Scatter and List Plots

3-291

3 Mathematics

Create Bar Charts, Histograms, and Pie Charts

In this section...

“Bar Charts” on page 3-292

“Histograms” on page 3-294

“Pie Charts” on page 3-295

Bar charts, histograms, and pie charts help you compare different data
samples, categorize data, and see the distribution of data values across a
sample. These types of plots are very useful for communicating results of
data analysis. Bar charts, histograms, and pie charts can help your audience
understand your ideas, results, and conclusions quickly and clearly.

Bar Charts
To compare different data samples or to show how individual elements
contribute to an aggregate amount, use bar charts. A bar chart represents
each element of a data sample as one bar. Bars are distributed along the
horizontal or vertical axis, with each data element at a different location.
To compare data samples, create a bar chart for two or more data samples.
In this case, MuPAD accesses elements with the same index and plots the
bars for these elements next to each other. For example, create three lists
of random numbers:
x := [frandom() $ i = 1..10]; y := [frandom() $ i = 1..10]; z := [frandom()
$ i = 1..10][0.2703581656, 0.8310371787, 0.153156516, 0.9948127808,
0.2662729021, 0.1801642277, 0.452083055, 0.6787819563, 0.3549849261,
0.6818588132]

[0.7219186551, 0.4738297742, 0.7889814922, 0.2115258358, 0.8556871754,
0.04489739417, 0.8791601269, 0.9193848479, 0.7350574234, 0.7875450269]

3-292

Create Bar Charts, Histograms, and Pie Charts

[0.9371484273, 0.2953238727, 0.9334772314, 0.9362730734, 0.5910800883,
0.6358075032, 0.4285065377, 0.2939293408, 0.1940618534, 0.4678382754]

To create a 2-D bar chart, use the plot::Bars2d function. The chart displays
data from the data samples x, y, and z. The resulting plot shows the elements
with the same index clustered together. Small gaps separate each group of
elements from the previous and the next group:
plot(plot::Bars2d(x, y, z))

To create a 3-D bar chart, use the plot::Bars3d function. This function accepts
matrices and arrays. The function also accepts nested lists with flat inner
lists. The plot::Bars3d function draws each element as a separate 3-D block.
The elements of each row of an array or a matrix (or the elements of each flat
list) appear along one horizontal axis. Bars that represent elements in the
first column of an array or a matrix appear along the other horizontal axis. If

3-293

3 Mathematics

you use a nested list, the elements of the inner lists with the same indices
appear along the other horizontal axis. By default, the plot::Bars3d function
does not display gaps between the groups of elements. Use the Gap option
to create gaps and specify their size:
plot(plot::Bars3d([x, y, z], Gap = [0.5, 0.8]))

Histograms
Histograms show the distribution of data values across a data range. They
divide the data range into a certain number of intervals (bins), tabulate the
number of values that fall into each bin, and plot these numbers using bars of
varying height. To create a histogram, use the plot::Histogram2d function. By
default, this function divides the data range into seven bins. To specify the
number of bins, use the Cells option. For example, create the histogram of
the following data sample categorizing the data into 10 bins:
data := [-10.1, -1, 1.1, 3.5, 13, 0, -5.5, 0.5, 7.9, 15, 0.15, 6.7, 2, 9]:
plot(plot::Histogram2d(data, Cells = 10))

3-294

Create Bar Charts, Histograms, and Pie Charts

Pie Charts
Pie charts can help you effectively communicate a portion (or percentage) that
each element of a data sample contributes to the total number of all elements.
To create a 2-D pie chart, use the plot::Piechart2d function. To create a 3-D
pie chart, use the plot::Piechart3d function. A 3-D pie chart does not show any
additional information. The 3-D view simply adds depth to the presentation
by plotting the chart on top of a cylindrical base and lets you rotate the plot.

Suppose, you need to analyze the following list of numbers:
data := [-10.1, -1, 1.1, 3.5, 13, 0, -5.5, 0.5, 7.9, 15, 0.15, 6.7, 2, 9]:First, use the
stats::frequency function to categorize the data into bins. (See Data Binning
for more details.)
T := stats::frequency(data)table(10 = [[12.49, 15.0], 2, [13, 15]], 9 = [[9.98,
12.49], 0, []], 8 = [[7.47, 9.98], 2, [7.9, 9]], 7 = [[4.96, 7.47], 1, [6.7]], 6 = [[2.45,
4.96], 1, [3.5]], 5 = [[-0.06, 2.45], 5, [0, 0.15, 0.5, 1.1, 2]], 4 = [[-2.57, -0.06],
1, [-1]], 3 = [[-5.08, -2.57], 0, []], 2 = [[-7.59, -5.08], 1, [-5.5]], 1 = [[-infinity,
-7.59], 1, [-10.1]])

3-295

3 Mathematics

The result is a table that shows the intervals (bins), number of elements
in those bins, and the data elements in each bin. The plot::Piechart2d and
plot::Piechart3d functions do not accept tables as arguments. They accept
lists, vectors, and arrays with one row or one column. Before creating a pie
chart, extract the bins and the number of elements in them into two separate
tables:
Counts := map(T, op, 2); Bins := map(T, op, 1)table(10 = 2, 9 = 0, 8 = 2, 7 = 1, 6
= 1, 5 = 5, 4 = 1, 3 = 0, 2 = 1, 1 = 1)

table(10 = [12.49, 15.0], 9 = [9.98, 12.49], 8 = [7.47, 9.98], 7 = [4.96, 7.47], 6 =
[2.45, 4.96], 5 = [-0.06, 2.45], 4 = [-2.57, -0.06], 3 = [-5.08, -2.57], 2 = [-7.59,
-5.08], 1 = [-infinity, -7.59])

3-296

Create Bar Charts, Histograms, and Pie Charts

Now, extract the entries from the Bins and Counts tables and create the
lists containing these entries:
slices := [Counts[i] $ i = 1..10]: titles := [expr2text(Bins[i]) $ i = 1..10]:Create a
2-D pie chart by using the plot::Piechart2d function. The slices list specifies
the portions that each bin contributes to the total number of all elements of the
data sample. The titles list specifies the titles for each piece on the pie chart:
plot(plot::Piechart2d(slices, Titles = titles))

3-297

3 Mathematics

Create a 3-D pie chart from the same data by using the plot::Piechart3d
function. To rotate the resulting 3-D chart, click any place on the chart, hold
the mouse button and move the cursor:
plot(plot::Piechart3d(slices, Titles = titles, Radius = 0.3))

3-298

Create Bar Charts, Histograms, and Pie Charts

3-299

3 Mathematics

Create Box Plots
Box plots reduce data samples to a number of descriptive parameters. Box
plots are very useful for a quick overview and comparison of discrete data
samples. To create a box plot, use the plot::Boxplot function. For example,
create a box plot for the data samples data1 and data2 that contain random
floating-point numbers from the interval [0.0, 1.0) and the value 2 (the
outlier):
data1 := [frandom() $ i = 1..10]: data1 := append(data1, 2); data2 :=
[frandom() $ i = 1..10]: data2 := append(data2, 2); p := plot::Boxplot(data1,
data2): plot(p)[0.9505346935, 0.7671696761, 0.3879781556, 0.6800823524,
0.09165554125, 0.6105917364, 0.6165219703, 0.08539849696, 0.8255921764,
0.1102019865, 2]

[0.9646295764, 0.9636463557, 0.6686584004, 0.07436099118, 0.4239603781,
0.3171767607, 0.1045730269, 0.004271391317, 0.04522333971, 0.8062151715,
2]

3-300

Create Box Plots

This plot demonstrate the following features:

• The tops and bottoms of each box are the 25th and 75th percentiles of the
data samples, respectively. The distances between the tops and bottoms
are the interquartile ranges.

• The line in the middle of each box is the sample median. A median is not
always in the center of the box. The median shows the sample obliquity
(skewness) of the sample distribution.

• The lines extending above and below each box are the whiskers. Whiskers
extend from the ends of the interquartile ranges to the furthest observations
within the maximum whisker length. The maximum whisker length is 3/2
of the height of the central box measured from the top or bottom of the box.

• The data points that lay beyond the whisker lengths are the outliers.
Outliers are values that are more than 3/2 times the interquartile range
away from the top or bottom of the box.

The Notched option enables you to create a box plot with notches. Notches
display the variability of the median between samples:
p := plot::Boxplot(data1, data2, Notched = TRUE): plot(p)

3-301

3 Mathematics

Create Quantile-Quantile Plots
Quantile-quantile plots help you determine whether two samples come from
the same distribution family. Quantile-quantile plots are scatter plots of
quantiles computed from each sample together with a reference line along the
diagonal of the plot. If the data forms the line, it is reasonable to assume that
the two samples come from the same distribution family. If the data falls
near the reference line, you also can assume that the two samples have the
same mean and the same variance.

To create a quantile-quantile plot, use the plot::QQplot function. For example,
create the data samples data1 and data2 that contain random floating-point
numbers from the interval [0.0, 1.0). Use the frandom function to create
the data1 sample. Use the stats::uniformRandom function to create the
data2 sample. Both functions produce uniformly distributed numbers. The
quantile-quantile plot of these two data samples confirms that the samples
come from the same distribution family. The plot is close to the line with
a slope of 1:
data1 := [frandom() $ i = 1..100]: data2 := [stats::uniformRandom(0, 1)() $ k
= 1..100]: p := plot::QQplot(data1, data2): plot(p)

3-302

Create Quantile-Quantile Plots

The following quantile-quantile plot clearly shows that these two data
samples come from different distribution families:
data1 := [stats::uniformRandom(0, 1)() $ k = 1..100]: data2 :=
[stats::exponentialRandom(0, 1)() $ k = 1..100]: p := plot::QQplot(data1,
data2): plot(p)

3-303

3 Mathematics

3-304

Univariate Linear Regression

Univariate Linear Regression
Regression is the process of fitting models to data. Linear regression assumes
that the relationship between the dependent variable yi and the independent
variable xi is linear: yi = a + bxi. Here a is the offset and b is the slope of
the linear relationship.

For linear regression of a data sample with one independent variable, MuPAD
provides the stats::linReg function. This function uses the least-squares
approach for computing the linear regression. stats::linReg chooses the
parameters a and b by minimizing the quadratic error:
Symbol::chi^2=sum(abs(y[i] - a - b*x[i])^2, i)

The function also can perform weighted least-squares linear regression that
minimizes

Symbol::chi^2=sum(w[i]*abs(y[i] - a - b*x[i])^2, i)

with the positive weight wi. By default, the weights are equal to 1.

Besides the slope a and the offset b of a fitted linear model, stats::linReg also
returns the value of the quadratic deviation χ2. For example, fit the linear
model to the following data:
reset()x := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: y := [11, 13, 15, 17, 19, 21, 23, 25, 27,
29]: stats::linReg(x, y)[[9, 2], 0]

The linear model yi = 9 + 2xi fits this data perfectly. The quadratic error for
this model is zero. To visualize the data and the resulting model, plot the data

3-305

3 Mathematics

by using the plot::Scatterplot function. The plot shows the regression line yi
= 9 + 2xi computed by stats::linReg:
plot(plot::Scatterplot(x, y))

When you work with experimental data samples, the data almost never
completely fits any linear model. The value of the quadratic error indicates
how far the actual data deviate from the fitted model. For example, modify
the data from the previous example by adding small random floating-point
values to the entries of the list y. Then, perform linear regression for the
entries of the lists x and y1 and plot the data:
y1 := y + [10*frandom() $ i = 1..10]: stats::linReg(x, y1); plot(plot::Scatterplot(x,
y1))[[13.43518739, 2.077876934], 76.58789632]

3-306

Univariate Linear Regression

The fact that stats::linReg finds a linear model to fit your data does not
guarantee that the linear model is a good fit. For example, you can find a
linear model to fit the following uniformly distributed random data points:
x := [frandom() $ i = 1..100]: y := [frandom() $ i = 1..100]: stats::linReg(x, y);
plot(plot::Scatterplot(x, y))[[0.4005452605, 0.2002242944], 8.272613418]

3-307

3 Mathematics

The large value of the quadratic error indicates that the linear model is a
poor fit for these data.
delete x, y, y1

3-308

Univariate Nonlinear Regression

Univariate Nonlinear Regression
Nonlinear regression can assume any type of relationship between the
dependent variable y and independent variables xj. For nonlinear regression,
MuPAD provides the stats::reg function. This function uses the least-squares
approach for computing the regression. stats::reg chooses the parameters p1,
..., pn by trying to minimize the quadratic error:
_outputSequence(Symbol::chi^2, fenced (p[1], Symbol::hellip,
p[n]))=sum(abs(y[i]-f(x[(i1)], Symbol::hellip, x[(im)], p[1], Symbol::hellip ,p[n]
))^2, i=1..k)

Here xij is the ith measurement of the independent variable xj. The stats::reg
function also can perform weighted least-squares nonlinear regression. By
default, weights are equal to 1.

stats::reg returns a list of optimized parameters [p1, ..., pn] and the minimized
value of the quadratic error for the specified model. Suppose, you want to
find a model for the following data:
sampleX := [1, 2, 3, 4, 5, 6, 7, 8, 9]: sampleY := [36.97666099, 54.14911101,
131.3852077, 30.43939553, 202.2004454, 129.5801972, 321.0663718,
411.3959961, 929.597986]:Plotting the data can help you choose the model:
plot1 := plot::Scatterplot(sampleX, sampleY, LinesVisible = FALSE):
plot(plot1)

3-309

3 Mathematics

The scatter plot clearly shows that linear models do not fit the data. The
dependency looks similar to exponential. Therefore you can try to fit the data
to different models involving exponential functions. Suppose, you want to try

fitting the data to the expression a + b^2*exp(x1)/x1 :
fit := stats::reg(sampleX, sampleY, p1 + p2^2*exp(x1)/x1, [x1], [p1,
p2])[[87.35956975, 0.9696856368], 26612.78899]

The stats::reg function returns the parameters of the model and the quadratic
error as a nested list. To access the parameters separately, use the following
commands:
a := fit[1][1]; b := fit[1][2]; chi2 := fit[2]87.35956975

3-310

Univariate Nonlinear Regression

0.9696856368

26612.78899

Now, plot the data and expression that you used to fit the data on the same
plot. This plot shows how the model expression fits the data:
plot2 := plot::Function2d(a + b^2*exp(x)/x, x = 1..9): plot(plot1, plot2)

3-311

3 Mathematics

Multivariate Regression
The stats::reg function also performs linear and nonlinear regressions with
two or more independent variables. The following example demonstrates how
to perform regression and fit the data to a function of two variables. Suppose,
you have three data lists that contain coordinates x, y, and z of discrete points:
sampleX := [-0.9612553839, -0.329576986, 0.7544749248, 0.7339191669,
-0.294101483, -0.9809519422, -0.6251624775, -0.1885706545, 0.4729466504,
0.4402179092, -0.1883574567, -0.6260246367, -0.0274947885,
-0.01843922645, -0.02687538212, -0.03682895886, -0.009212115975,
-0.04956242636]: sampleY := [-0.02185415496, -0.9146217269,
-0.5792023459, 0.5440822742, 0.8848317212, -0.03925037966,
-0.02360776024, -0.5657632266, -0.3461422332, 0.3429495709, 0.5113552882,
-0.02089004809, -0.03700165982, -0.0226531849, -0.004897297126,
-0.03063832565, -0.03469956571, -0.01391540741]: sampleZ := [
0.2755344332, 0.272077192, 0.2682296712, 0.2915713541, 0.2737466882,
0.3060314064, 0.7624231851, 0.8013891042, 0.7755723041, 0.7631156115,
0.7816602999, 0.7807856826, 0.9679031724, 0.9661527172, 0.9632260164,
0.986479402, 0.9554368723, 0.9768285979]:Suppose, you want to find
the surface that fits these points. Start with plotting the data. The
plot::PointList3d function, which plots a finite number of discrete points,
requires the coordinates of each point to be grouped together. The following
commands create separate lists for the coordinates of each point: [xi, yi, zi] and
put these lists into one nested list:
points := [[sampleX[i], sampleY[i], sampleZ[i]] $ i = 1..nops(sampleX)]:Now,
use the plot::PointList3d function to visualize the data:
plot1 := plot::PointList3d(points, PointSize = 2.5): plot(plot1)

3-312

Multivariate Regression

Rotating the plot can help you guess which surface can possibly fit the data.
This plot shows that the data can belong to the upper half of a sphere. Thus,
try to fit the data to a sphere with an unknown radius r. The stats::reg
function searches for the best fitting value for the parameter r:
fit := stats::reg(sampleX, sampleY, sampleZ, sqrt(r^2 - x1^2 - y1^2), [x1, y1],
[r])[[0.9977031578], 0.0519038156]

The stats::reg function also accepts the nested list points:
fit := stats::reg(points, sqrt(r^2 - x1^2 - y1^2), [x1, y1], [r])[[0.9977031578],
0.0519038156]

3-313

3 Mathematics

The stats::reg function returns the parameters of the model and the quadratic
error in a form of a nested list. To access the parameters separately, use the
following commands:
R := op(fit)[1][1]; chi2 := op(fit)[2]0.9977031578

0.0519038156

Now, plot the data and sphere that you used to fit the data on the same plot.
Rotate the plot to see how the sphere fits the data:
plot2 := plot::Function3d(sqrt(R^2 - x^2 - y^2), x = -1..1, y = -1..1): plot(plot1,
plot2)

3-314

Principles of Hypothesis Testing

Principles of Hypothesis Testing
Hypothesis (goodness-of-fit) testing is a common method that uses statistical
evidence from a sample to draw a conclusion about a population. In
hypothesis testing, you assert a particular statement (a null hypothesis) and
try to find evidence to support or reject that statement. A null hypothesis is
an assumption about a population that you would like to test. It is “null” in
the sense that it often represents a status-quo belief, such as the absence of a
characteristic or the lack of an effect. You can formalize it by asserting that
a population parameter, or a combination of population parameters, has a
certain value. MuPAD enables you to test the following null hypotheses:

• The data has the distribution function f. If f is a cumulative distribution
function (CDF), you can use the classical chi-square goodness-of-fit test or
the Kolmogorov-Smirnov test. If f is probability density function (PDF),
a discrete probability function (PF), or an arbitrary distribution function,
use the classical chi-square goodness-of-fit test.

• The data has a normal distribution function with a particular mean and a
particular variance. For cumulative distribution functions, use the classical
chi-square goodness-of-fit test or the Kolmogorov-Smirnov test. For other
distribution functions, use the classical chi-square goodness-of-fit test.

• The data has a normal distribution function (with unknown mean and
variance). Use the Shapiro-Wilk goodness-of-fit test for this hypothesis.

• The mean of the data is larger than some particular value. Use the t-Test
for this hypothesis.

The main result returned by the hypothesis tests is the p-value (PValue).
The p-value of a test indicates the probability, under the null hypothesis, of
obtaining a value of the test statistic as extreme or more extreme than the
value computed from the sample. If the p-value is larger than the significance
level (stated and agreed upon before the test), the null hypothesis passes
the test. A typical value of a significance level is 0.05. P-values below a
significance level provide strong evidence for rejecting the null hypothesis.

3-315

3 Mathematics

Perform chi-square Test
For the classical chi-square goodness-of-fit test, MuPAD provides the
stats::csGOFT function. This function enables you to test the data against
an arbitrary function f. For example, you can define f by using any of the
cumulative distribution functions, probability density functions, and discrete
probability functions available in the MuPAD “Statistics” library. You also
can define f by using your own distribution function. For example, create the
data sequence x that contains a thousand random entries:
reset()f := stats::normalRandom(0, 1/2): x := f() $ k = 1..1000:Suppose, you
want to test whether the entries of that sequence are normally distributed
with the mean equal to 0 and the variance equal to 1/2. The classical
chi-square test uses the following three-step approach:

1 Divide the line of real values into several intervals (also called bins or cells).

2 Compute the number of data elements in each interval.

3 Compare those numbers with the numbers expected for the specified
distribution.

When you use the stats::csGOFT function, specify the cell boundaries as
an argument. You must specify at least three cells. The recommended

minimum number of cells for a sample of n data elements is 2*n^(2/5) .
The recommended method for defining the cells is to use the
stats::equiprobableCells function. This function creates equiprobable cells
when the underlying distribution is continuous:
q := stats::normalQuantile(0, 1/2): cells := stats::equiprobableCells(40, q):Now,
call the stats::csGOFT function to test the data sequence x. For example,
compare x with the cumulative normal distribution function with the same
mean and variance. The stats::csGOFT returns a large p-value for this test.
Therefore, the null hypothesis (x is normally distributed with the mean equal
to 0 and the variance equal to 1/2) passes this test. Besides the p-value,
stats::csGOFT returns the observed value of the chi-square statistics and the
minimum of the expected cell frequencies:
stats::csGOFT(x, cells, CDF = stats::normalCDF(0, 1/2))[PValue =
0.7728609833, StatValue = 32.16, MinimalExpectedCellFrequency = 25.0]

3-316

Perform chi-square Test

The stats::csGOFT enables you to test the data against any distribution
function. For example, testing the sequence x against the probability density
function gives the same result:
stats::csGOFT(x, cells, PDF = stats::normalPDF(0, 1/2))[PValue =
0.7728609833, StatValue = 32.16, MinimalExpectedCellFrequency = 25.0]

If you test the same data sequence x against the normal distribution function
with different values of the mean and the variance, stats::csGOFT returns the
p-value that is below the typical significance level 0.05. The null hypothesis
does not pass the test:
stats::csGOFT(x, cells, CDF = stats::normalCDF(0, 1))[PValue =
9.164721121e-21, StatValue = 184.3794698, MinimalExpectedCellFrequency
= 17.68346079]

3-317

3 Mathematics

Perform Kolmogorov-Smirnov Test
For the Kolmogorov-Smirnov goodness-of-fit test, MuPAD provides the
stats::ksGOFT function. This function enables you to test the data against
any cumulative distribution available in the MuPAD “Statistics” library. The
Kolmogorov-Smirnov test returns two p-values. The null hypothesis passes
the test only if both values are larger than the significance level. For example,
create the following data sequence x which contains a thousand entries:
f := stats::normalRandom(1, 1/3): x := f() $ k = 1..1000:Use the function
stats::ksGOFT to test whether the sequence x has a normal distribution with
the mean 1 and the variance 1/3. Suppose, you apply the typical significance
level 0.05. Since both p-values are larger than the significance level, the
sequence passes the test:
stats::ksGOFT(x, CDF = stats::normalCDF(1, 1/3))[PValue1 = 0.06518463285,
StatValue1 = 1.163141302, PValue2 = 0.8735153294, StatValue2 =
0.2548375105]Test the same sequence, but this time compare it to the normal
distribution with the variance 1. Both p-values are much smaller than the
significance level. The null hypothesis states that the sequence x has a
normal distribution with the mean 1 and the variance 1. This hypothesis
must be rejected:
stats::ksGOFT(x, CDF = stats::normalCDF(1, 1))[PValue1 = 1.7315647e-17,
StatValue1 = 4.377042911, PValue2 = 2.761005529e-14, StatValue2 =
3.938439155]

3-318

Perform Shapiro-Wilk Test

Perform Shapiro-Wilk Test
The Shapiro-Wilk goodness-of-fit test asserts the hypothesis that the data has
a normal distribution. For the Shapiro-Wilk goodness-of-fit test, MuPAD
provides the stats::swGOFT function. For example, create the normally
distributed data sequence x by using the stats::normalRandom function:
fx := stats::normalRandom(0, 1/2): x := fx() $ k = 1..1000:Also, create the
data sequence y by using the stats::poissonRandom function. This function
generates random numbers according to the Poisson distribution:
fy := stats::poissonRandom(10): y := fy() $ k = 1..1000:Now, use the
stats::swGOFT function to test whether these two sequences are normally
distributed. Suppose, you use the typical significance level 0.05. For the first
sequence (x), the resulting p-value is above the significance level. The entries
of the sequence x can have a normal distribution. For the second sequence
(y), the resulting p-value is below the significance level. Therefore, reject the
hypothesis that the entries of this sequence are normally distributed:
stats::swGOFT(x); stats::swGOFT(y)[PValue = 0.4388845871, StatValue
= 0.9983128403]

[PValue = 0.0000000004748026729, StatValue = 0.9812478768]

3-319

3 Mathematics

Perform t-Test
The t-Test compares the actual mean value of a data sample with the specified
value m. The null hypothesis for this test states that the actual mean value
is larger than m. For the t-Test, MuPAD provides the stats::tTest function.
For example, create the normally distributed data sequence of 1000 entries by
using the stats::normalRandom function:
f := stats::normalRandom(1, 2): x := f() $ k = 1..1000:Now, use the stats::tTest
function to test whether the actual mean value of x is larger than 1. Use the
significance level 0.05. The returned p-value indicates that the hypothesis
passes the t-Test:
stats::tTest(x, 1)[PValue = 0.1353274218, StatValue = -1.102166281]With the
same significance level 0.05, the hypothesis that the actual mean value is
larger than 2 does not pass the t-Test:
stats::tTest(x, 2)[PValue = 6.722832021e-98, StatValue = -23.50521869]

3-320

Divisors

Divisors

In this section...

“Compute Divisors and Number of Divisors” on page 3-321

“Compute Greatest Common Divisors” on page 3-322

“Compute Least Common Multiples” on page 3-323

Compute Divisors and Number of Divisors
Studying divisibility of integers by other integers is a common task in number
theory. The MuPAD numlib library contains the functions that support this
task. These functions return all divisors, the sum of all divisors, the number
of divisors, and the number of prime divisors. For example, to find all positive
integer divisors of an integer number, use the numlib::divisors function:
numlib::divisors(12345)[1, 3, 5, 15, 823, 2469, 4115, 12345]

To find only prime divisors of an integer, use the numlib::primedivisors
function:
numlib::primedivisors(12345)[3, 5, 823]

To compute the number of all divisors of an integer, use the
numlib::numdivisors function. To compute the number of prime divisors,
use the numlib::numprimedivisors function. For example, the number
123456789987654321 has 192 divisors. Only seven of these divisors are
prime numbers:
numlib::numdivisors(123456789987654321),
numlib::numprimedivisors(123456789987654321)192, 7

3-321

3 Mathematics

The numlib::numprimedivisors function does not take into account
multiplicities of prime divisors. This function counts a prime divisor with
multiplicity as one prime divisor. To compute the sum of multiplicities of
prime divisors, use the numlib::Omega function. For example, the number
27648 has 44 divisors, and 2 of them are prime numbers. The prime divisors
of 27648 have multiplicities; the total sum of these multiplicities is 13:
numlib::numdivisors(27648), numlib::numprimedivisors(27648),
numlib::Omega(27648)44, 2, 13

You can factor the number 27648 into prime numbers to reveal the
multiplicities. To factor an integer into primes, use the ifactor function:
ifactor(27648)2^10*3^3

To compute the sum of all positive integer divisors of an integer number, use
the numlib::sumdivisors function. For example, compute the sum of positive
divisors of the number 12345:
numlib::sumdivisors(12345)19776

Compute Greatest Common Divisors
The largest nonnegative integer that divides all the integers of a sequence
exactly (without remainders) is called the greatest common divisor of a
sequence. To compute the greatest common divisor of a sequence of integers,
use the igcd function. For example, compute the greatest common divisor of
the following numbers:
igcd(12345, 23451, 34512, 45123, 51234)3

3-322

Divisors

The icontent function computes the greatest common divisor of the coefficients
of a polynomial. All coefficients must be integers:
icontent(12*x^2 + 16*x + 24)4

Compute Least Common Multiples
The smallest integer that is exactly divisible (without remainders) by all
integers of a sequence is called the least common multiple of a sequence. To
compute the least common multiple of a sequence of integers, use the ilcm
function. For example, compute the least common multiple of the following
numbers:
ilcm(12, 5, 2, 21)420

3-323

3 Mathematics

Primes and Factorizations

In this section...

“Operate on Primes” on page 3-324

“Factorizations” on page 3-326

“Prove Primality” on page 3-326

Operate on Primes
Prime numbers are positive integers larger than 1 that have only two positive
integer divisors: 1 and the number itself. In MuPAD, you can check whether
the number is prime by using the isprime function. For example, 809 is a
prime number while 888 and 1 are not primes:
isprime(809), isprime(888), isprime(1)TRUE, FALSE, FALSE

In rare cases, the isprime function can return a false positive result. The
function performs the Miller-Rabin primality test and uses 10 independent
random bases. For a more accurate (and also slower) method, see Proving
Primality.

The sequence of prime numbers is infinite. It starts with 2, 3, 5, 7, 11, 13, 17,
and goes on. The ithprime function lets you quickly find and display any
entry of this sequence. For example, to find the 100th prime number, enter
ithprime(100):
ithprime(100)541

To find the prime number that appears in the sequence before a particular
value, use the prevprime function. To find the prime number that appears
after a particular value, use the nextprime function. For example, find the
prime numbers that precede and follow the number 1000:
prevprime(1000), nextprime(1000)997, 1009

3-324

Primes and Factorizations

Note Note prevprime and nextprime use the probabilistic primality test
(the Miller-Rabin test). In rare cases, these functions can return nonprime
numbers.

MuPAD stores a precalculated table of the prime numbers up to a certain
value. The ifactor function with the PrimeLimit option returns that value:
ifactor(PrimeLimit)1000000

The ithprime function with the PrimeLimit option returns the number of
primes in that table:
ithprime(PrimeLimit)78498

The ithprime function extracts the prime number from this table. To compute
larger prime numbers (which MuPAD does not store in the table), ithprime
chooses some number as a starting point, and then recursively calls the
nextprime function. Although the internal algorithm tries to reduce the
number of computation steps, computing huge prime numbers can be very
slow:
ithprime(100000000)2038074743

Suppose, you want to display a sequence of prime numbers. For the numbers
that MuPAD stores in the table, call the ithprime function to find each
number in the sequence:
ithprime(i) $ i = 1000..10107919, 7927, 7933, 7937, 7949, 7951, 7963, 7993,
8009, 8011, 8017

3-325

3 Mathematics

If the numbers exceed the value returned by ifactor(PrimeLimit), MuPAD
does not store them. In this case, calling ithprime for each number can be very
slow. More efficiently, use ithprime to find the first number in the sequence,
and then use nextprime to find all following numbers:
(n := ithprime(3*10^7)), (n := nextprime(n + 1)) $i = 1..10573259391,
573259433, 573259439, 573259483, 573259523, 573259529, 573259573,
573259627, 573259637, 573259651, 573259679

To find how many prime numbers do not exceed a particular value, use the
numlib::pi function:
numlib::pi(2), numlib::pi(3), numlib::pi(20), numlib::pi(1000),
numlib::pi(15.789)1, 2, 8, 168, 6

Factorizations
You can represent any integer number as a product of primes. This process is
called factoring an integer. To factor an integer, use the ifactor function. For
example, factor the number 362880:
ifactor(362880)2^7*3^4*5*7

Prove Primality
The function numlib::proveprime implements the
Atkin-Goldwasser-Kilian-Morain algorithm for proving primality. For

3-326

Primes and Factorizations

information about primality proving and this particular algorithm, see
the following papers:

• Atkin, A. O., and F. Morain. “Elliptic curves and primality proving.”
Mathematics of Computation. Vol. 61, Number 203, 1993.

• Goldwasser, S., and J. Kilian. “Almost all primes can be quickly certified”.
Proceedings of the 18th annual ACM symposium on theory of computing.
Berkeley, CA, US, 1986, pp. 316-329.

For small prime numbers, numlib::proveprime returns the value TRUE. For
composite numbers, the function returns FALSE:
numlib::proveprime(541), numlib::proveprime(243)TRUE, FALSE

For larger prime numbers, numlib::proveprime returns a certificate of
primality:
certificate := numlib::proveprime(1979)[1979, 8, [2, 3, 3, 107], 954, 1272, 0,
937, [107]]

Generated certificates provide all data that you need for proving primality
of a number by the Atkin-Goldwasser-Kilian-Morain algorithm. You can
substitute the numbers into the algorithm and verify the primality of a
number. The numlib::checkPrimalityCertificate function can verify the
certificate for you:
numlib::checkPrimalityCertificate(certificate)TRUE

Also, you can print the primality proving routine step-by-step by increasing
the information level. Increasing the information level lets you expose more
details, such as algorithms and intermediate steps that the function uses. To
control the information level, use the setuserinfo function. The first argument

3-327

3 Mathematics

of setuserinfo specifies the name of a procedure or a domain for which you
want increase the information level. The second argument specifies the level
itself. (Typically, setting this value to 1 or 2 exposes the most important
details.)
certificate:= numlib::proveprime(1979); setuserinfo(Any, 2):
numlib::checkPrimalityCertificate(certificate)[1979, 8, [2, 3, 3, 107], 954,
1272, 0, 937, [107]]

Info: The proof is based on the following theorem due to Gold- wasser and
Kilian, see article "Almost all primes can be quickly certified", Proc. 18th
STOC, ACM, 1986: Theorem GK: Let N be an integer prime to 6, E an elliptic
curve over Z/NZ, together with a point P on E and m and s two integers
with s dividing m. For each prime divisor q of s, we put (m/q)P = (xq:yq:zq).
We assume that mP is the zero of E and gcd(zq,N)=1 for all q. Then, if
s>(N^(1/4)+1)^2, N is prime. Info: N=1979 D=8 m=1926 Info: a=954 b=1272
P=(0 : 937 : 1) Info: m*P=(0 : 1 : 0) Info: 107 > (N^(1/4)+1)^2 = 58.82551098
Info: Theorem GK applies for N=1979 E(954,1272) P=(0:937:1) m=1926 s=107,
therefore: Info: 1979 is prime if 107 is prime TRUE

For further computations, restore the information level to its default value.
setuserinfo(NIL):

3-328

Modular Arithmetic

Modular Arithmetic

In this section...

“Quotients and Remainders” on page 3-329

“Common Modular Arithmetic Operations” on page 3-331

“Residue Class Rings and Fields” on page 3-332

Quotients and Remainders
Computing the quotient and the remainder of the division of two integers is a
common operation in number theory. The MuPAD standard library provides
the div function for computing the quotient of a division. The standard library
also provides the modulo operator mod for computing the remainder of a
division:
17 div 3, 17 mod 35, 2

MuPAD supports two definitions of the remainder of a division. The first
definition states that the remainder is always a nonnegative number. To
compute the remainder by this definition, use the positive modulo function
modp or the default modulo operator mod:
123 mod 5, modp(123, 5)3, 3

The symmetric modulo function mods implements the alternative definition
of the remainder of a division. This definition allows the remainder to be
negative. The symmetric modulo function compares the absolute values of
the negative and the positive remainders, and returns the remainder that
has the least absolute value:
mods(122, 5), mods(123, 5)2, -2

3-329

3 Mathematics

You can redefine the modulo operator mod by assigning mods or modp to mod:
123 mod 5; _mod := mods: 123 mod 53

-2

Redefining the modulo operator mod does not affect the div function that
computes the quotient. The div function always computes the quotient by
assuming that the remainder must be nonnegative:
123 div 5, 123 mod 524, -2

For further computations, restore the default behavior of the modulo operator:
_mod := modp:Now, suppose that the number is represented as ab, where a
and b are integers. Suppose, you want to compute the modular power of ab

over c, which is the remainder of the division of ab by an integer c. You can
compute the modular power by using the modulo operator mod:
987^124 mod 129

When you use the mod operator to compute the modular power, MuPAD
performs computations in two steps. First, the system computes the power
of an integer, and then it divides the result and finds the remainder. This
approach works if both the number and its power are small. However, if the
numbers are large, the first step (computing the power of an integer) can be
extremely slow. To avoid this step, use the powermod function. This function
computes the modular power more efficiently, especially for large numbers:
powermod(987, 124, 12), powermod(987, 123456789, 12)9, 3

3-330

Modular Arithmetic

Common Modular Arithmetic Operations
MuPAD implements a large number of algorithms that enable you to perform
various modular arithmetic operations. For example, you can quickly compute
primitive roots, orders of residue classes, and the Euler’s totient function.

If g is a primitive root modulo n, then for any integer a there exists an integer
k such that gk a(mod n). This congruence has solutions (primitive roots
exist) only if igcd(a, n) = 1. To compute the least primitive root modulo
n, use the numlib::primroot function. For example, compute the primitive
roots modulo 19, 23, 191, and 311:
numlib::primroot(19), numlib::primroot(23), numlib::primroot(191),
numlib::primroot(311)2, 5, 19, 17

The numlib::order function computes the order of a residue class. For an
integer a and a positive integer n, this function returns the least number
k, such that ak 1(mod n). For example, compute the order of the residue
class of 3 in the unit group modulo 7:
numlib::order(3, 7)6

The Euler’s totient function of an integer n counts all positive integers that
satisfy the following two conditions:

• The integer is coprime to n.

• The integer is smaller or equal to n.

The Euler’s totient function returns the number of such integers. To compute
the Euler’s totient function in MuPAD, use the numlib::phi function:
numlib::phi(i) $ i = 1..201, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8

3-331

3 Mathematics

For other modular arithmetic functions available in MuPAD, see the numlib
library.

Residue Class Rings and Fields
For the two integers a and m, all integers b, such that a b(mod m), construct
a residue class. The MuPAD domain Dom::IntegerMod lets you create a ring
that consists of all residue classes modulo some integer m. For example, create
a residue class ring of integers modulo 11:
Z11:= Dom::IntegerMod(11)Dom::IntegerMod(11)

Now, create the elements a and b of this ring. Then, compute the sum of
a and b:
a:= Z11(1); b:= Z11(6); a + b1 mod 11

6 mod 11

7 mod 11

You can use Dom::IntegerMod to specify polynomials over a coefficient ring.
When computing the coefficients of a polynomial, Dom::IntegerMod(7) uses
the positive modulo function modp:
poly([[9, 3], [13, 1]], [x], Dom::IntegerMod(11))poly(9*x^3 + 2*x, [x],
Dom::IntegerMod(11))

3-332

Modular Arithmetic

For specifying polynomials over a residue class ring n, the poly function also
provides the IntMod option. This option enables you to create a polynomial
with the coefficients that belong to the IntMod(n) ring. Here n is an integer
greater than 1. Mathematically, this ring coincides with Dom::IntegerMod(n).
However, MuPAD operates differently on the polynomials created over
IntMod(n) and the polynomials created over Dom::IntegerMod(n). In
particular, MuPAD performs arithmetic operations for polynomials over the
IntMod ring faster. Also, if you use IntMod(n), MuPAD uses the symmetric
modulo function mods:
poly([[9, 3], [13, 1]], [x], IntMod(11))poly(- 2*x^3 + 2*x, [x], IntMod(11))

The domain Dom::GaloisField enables you to create the residue class field

_outputSequence(Z_p,‘[X]/<f>‘) , which is a finite field with pn

elements. If you do not specify f, MuPAD randomly chooses f from all
irreducible polynomials of the degree n. For more information, see the
Dom::GaloisField help page.

3-333

3 Mathematics

Congruences

In this section...

“Linear Congruences” on page 3-334

“Systems of Linear Congruences” on page 3-335

“Modular Square Roots” on page 3-336

“General Solver for Congruences” on page 3-339

Linear Congruences
If a, b, and m are integers, and (a - b)/m is also an integer, then the numbers
a and b are congruent modulo m. The remainder of the division a/m is equal to
the remainder of the division of b/m. For example, 11 5(mod 3):
5 mod 3 = 11 mod 32 = 2

For known integers a and m, all integers b, such that a b(mod m), form a
residue class. Thus, the numbers 5 and 11 belong to the same residue class
modulo 3. The numbers 5 + 3n, where n is an integer, also belong to this
residue class.

Suppose, you want to solve an equation ax b(mod m), where a, b, and
m are integers and x is an unknown integer. Such equations are called
linear congruence equations. To solve a linear congruence equation, use the
numlib::lincongruence function. This function returns only the solutions x <
m. For example, solve the linear congruence equation 56x 77(mod 49):
numlib::lincongruence(56, 77, 49)[4, 11, 18, 25, 32, 39, 46]

A linear congruence equation ax b(mod m) has at least one solution if
and only if the parameters a, b, and m satisfy the following condition: b
0(mod gcd(a, m)). If the parameters of a linear congruence equation do not

3-334

Congruences

satisfy this condition, the equation does not have a solution. In this case,
numlib::lincongruence returns FAIL:
numlib::lincongruence(56, 77, 48)FAIL

You can divide a rational number u/v modulo an integer m, and compute the
remainder of such a division. Here u and v are nonzero coprime integers. The
modulo operator computes an integral solution r of the linear congruence
vr u(mod m). For example, compute the remainder of the division of the
rational number 3/7 modulo 1231:
r := 3/7 mod 1231528

To reconstruct a linear congruence from the modulus m and the remainder
r, use the numlib::reconstructRational(r, m) function call. For m =
1231 and r = 528, the numlib::reconstructRational function returns the
coefficients of the linear congruence 7r 3(mod 1231):
numlib::reconstructRational(528, 1231)3, 7

Systems of Linear Congruences
The Chinese remainder theorem states that if the integers mi(i = 1, ...,
n) are pairwise coprime, the system of n linear congruences x ai(mod
mi) has a solution. The numbers mi(i = 1, ..., n) are pairwise coprime
if the greatest common divisor of any pair of numbers mi, mj (i j) is 1.
The solution is unique up to multiples of the least common multiple (ilcm)
of m1, m2, ..., mn. To solve a system of linear congruence equations, use the
numlib::ichrem function:
numlib::ichrem([3, 1, 10], [6, 5, 13])231

3-335

3 Mathematics

The Chinese remainder theorem does not state that the system of linear
congruences is solvable only if numbers m1,... mn are pairwise coprime. If
these numbers are not pairwise coprime, the system still can have a solution.
Even if the numbers are not pairwise coprime, the solution is still unique up
to multiples of the least common multiple (ilcm) of m1, m2, ..., mn:
numlib::ichrem([5, 7, 9, 6], [10, 11, 12, 13])3945

If the numbers are not pairwise coprime, a system of linear congruences does
not always have a solution. For unsolvable systems, numlib::ichrem returns
FAIL:
numlib::ichrem([5, 1, 9, 6], [10, 15, 12, 13])FAIL

Modular Square Roots

Compute Modular Square Roots
To compute modular square roots x < m of the equation x2 a(mod m), use
the numlib::msqrts function. Here the integers a and m must be coprime. For
example, solve the congruence equation x2 13(mod 17):
numlib::msqrts(13, 17)[8, 9]

If the congruence does not have any solutions, numlib::msqrts returns an
empty set:
numlib::msqrts(10, 17)[]

If a and m are not coprime, numlib::msqrts errors:

3-336

Congruences

numlib::msqrts(17, 17) Error: Arguments must be relative prime.
[numlib::msqrts] If numlib::msqrts cannot solve a congruence, try using
the numlib::mroots function. For more information, see General Solver for
Congruences.

Use Solvability Tests: Legendre and Jacobi Symbols
The Legendre symbol determines the solvability of the congruence x2 a(mod
m), where m is a prime. You can compute the Legendre symbol only if the
modulus is a prime number. The following table demonstrates the dependency
between the value of the Legendre symbol and solvability of the congruence:

If the Legendre number is... The congruence...

1 Has one or more solutions

0 Cannot be solved by numlib::msqrts.
Try numlib::mroots.

-1 Has no solution

MuPAD implements the Legendre symbol as the numlib::legendre function.
If, and only if, the congruence x2 a(mod m) is solvable, the Legendre symbol
is equal to 1:
numlib::legendre(12, 13)1

numlib::msqrts(12, 13)[5, 8]

If, and only if, the congruence x2 a(mod m) does not have any solutions,
the Legendre symbol is equal to -1:
numlib::legendre(11, 13)-1

numlib::msqrts(11, 13)[]

3-337

3 Mathematics

If a and m are not coprime, the Legendre symbol is equal to 0. In this case,
numlib::legendre function returns 0, and numlib::msqrts errors:
numlib::legendre(13, 13)0

numlib::msqrts(13, 13) Error: Arguments must be relative prime.
[numlib::msqrts] You can compute the Legendre symbol only if the modulus
is a prime number. If a congruence has a nonprime odd modulus, you can
compute the Jacobi symbol. The Jacobi symbol determines the unsolvable
congruences x2 a(mod m). You cannot compute the Jacobi symbol if the
modulus is an even number. The following table demonstrates the dependency
between the value of the Jacobi symbol and the solvability of the congruence:

If the Jacobi number is... The congruence...

1 Might have solutions

0 Cannot be solved by numlib::msqrts.
Try numlib::mroots.

-1 Has no solutions

MuPAD implements the Jacobi symbol as the numlib::jacobi function. If the
Jacobi symbol is equal to -1, the congruence does not have a solution:
numlib::jacobi(19, 21)-1

numlib::msqrts(19, 21)[]

If Jacobi symbol is equal to 1, the congruence might have solutions:
numlib::jacobi(16, 21)1

3-338

Congruences

numlib::msqrts(16, 21)[4, 10, 11, 17]

However, the value 1 of the Jacobi symbol does not guarantee that the
congruence has solutions. For example, the following congruence does not
have any solutions:
numlib::jacobi(20, 21)1

numlib::msqrts(20, 21)[]

If a and m are not coprime, the Jacobi symbol is equal to 0. In this case,
numlib::jacobi function returns 0, and numlib::msqrts errors:
numlib::jacobi(18, 21)0

numlib::msqrts(18, 21) Error: Arguments must be relative prime.
[numlib::msqrts]

General Solver for Congruences
Besides solving a linear congruence or computing modular square roots,
MuPAD also enables you to solve congruences of a more general type of P(x)

0(mod m). Here P(x) is a univariate or multivariate polynomial. To solve
such congruences, use the numlib::mroots function. For example, solve the
congruence x3+ x2+ x + 1 0(mod 3). First, define the left side of the
congruence as a polynomial by using the poly function:
p := poly(x^3 + x^2 + x + 1)poly(x^3 + x^2 + x + 1, [x])

3-339

3 Mathematics

Now, use the numlib::mroots function to solve the congruence:
numlib::mroots(p, 299)[229, 252, 298]

Using the numlib::mroots function, you also can solve the congruence for a
multivariate polynomial. For a multivariate polynomial P(x1, ..., xn),
numlib::mroots returns a nested list as a result. Each inner list contains
one solution x1, ..., xn. For example, find modular roots of the following
multivariate polynomial:
p := poly(x^3*y^2 + x^2*y + x + y + 1): numlib::mroots(p, 11)[[0, 10], [3, 2], [3,
7], [7, 3], [7, 5], [8, 5], [8, 8], [9, 5], [9, 8], [10, 0], [10, 2]]

3-340

Sequences of Numbers

Sequences of Numbers

In this section...

“Fibonacci Numbers” on page 3-341

“Mersenne Primes” on page 3-341

“Continued Fractions” on page 3-342

Fibonacci Numbers
The Fibonacci numbers are a sequence of integers. The following recursion
formula defines the nth Fibonacci number:
F[0]=0, F[1]=1, _outputSequence(F[(n+2)]=F[n]+F[(n+1)], ‘.‘)

To compute the Fibonacci numbers, use the numlib::fibonacci function. For
example, the first 10 Fibonacci numbers are:
numlib::fibonacci(n) $ n = 0..90, 1, 1, 2, 3, 5, 8, 13, 21, 34

Mersenne Primes
The Mersenne numbers are the prime numbers 2p - 1. Here p is also a prime.
The numlib::mersenne function returns the list that contains the following
currently known Mersenne numbers:
numlib::mersenne()[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,
86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221,
3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457,
32582657, 37156667, 42643801, 43112609]

3-341

3 Mathematics

Continued Fractions
The continued fraction approximation of a real number r is an expansion
of the following form:

a[1]+1/(a[2] + 1/(a[3] + 1/(Symbol::hellip + a[k-1] + 1/(a[k] + Symbol::hellip))))

Here a1 is the integer floor(r), and a2, a3, ... are positive integers.

To create a continued fraction approximation of a real number, use
the numlib::contfrac function. For example, approximate the number
123456/123456789 by a continued fraction:
numlib::contfrac(123456/123456789)1/(1000 + 1/(156 + 1/(2 + 1/(8 + 1/(3 + 1/(1
+ 1/(3 + ‘&dots;‘)))))))

Alternatively, you can use the more general contfrac function. This function
belongs to the standard library. While numlib::contfrac accept only real
numbers as parameters, contfrac also accepts symbolic expressions. When

3-342

Sequences of Numbers

working with real numbers, contfrac internally calls numlib::contfrac, and
returns the result of the domain type numlib::contfrac:
a := contfrac(123456/123456789); domtype(a)1/(1000 + 1/(156 + 1/(2 + 1/(8 +
1/(3 + 1/(1 + 1/(3 + ‘&dots;‘)))))))

‘numlib::contfrac‘

Since contfrac internally calls numlib::contfrac, calling the numlib::contfrac
directly can speed up your computations.

3-343

3 Mathematics

3-344

4

Programming
Fundamentals

• “Data Type Definition” on page 4-3

• “Choose Appropriate Data Structures” on page 4-6

• “Convert Data Types” on page 4-8

• “Define Your Own Data Types” on page 4-15

• “Access Arguments of a Procedure” on page 4-18

• “Test Arguments” on page 4-20

• “Verify Options” on page 4-24

• “Trace Procedures, Domains, Methods, and Function Environments” on
page 4-27

• “Display Progress” on page 4-30

• “Use Assertions” on page 4-34

• “Write Error and Warning Messages” on page 4-35

• “Handle Errors” on page 4-37

• “When to Analyze Performance” on page 4-39

• “Measure Time” on page 4-40

• “Profile Your Code” on page 4-42

• “Techniques for Improving Performance” on page 4-46

• “Display Memory Usage” on page 4-48

• “Remember Mechanism” on page 4-52

4 Programming Fundamentals

• “History Mechanism” on page 4-59

• “Why Test Your Code” on page 4-64

• “Write Single Tests” on page 4-66

• “Write Test Scripts” on page 4-68

• “Code Verification” on page 4-70

• “Protect Function and Option Names” on page 4-71

• “Create and Extend Libraries” on page 4-73

• “Data Collection” on page 4-81

• “Visualize Expression Trees” on page 4-87

• “Modify Subexpressions” on page 4-89

• “Variables Inside Procedures” on page 4-95

• “Utility Functions” on page 4-99

• “Private Methods” on page 4-102

• “Calls by Reference and Calls by Value” on page 4-103

• “Integrate Custom Functions into MuPAD” on page 4-108

For details about differences between the MuPAD and MATLAB programming
languages, see Integration of MuPAD and MATLAB on www.mathworks.com.
This information is also available in the Symbolic Math Toolbox™
documentation.

4-2

http://www.mathworks.com/help/toolbox/symbolic/brs6v40.html

Data Type Definition

Data Type Definition

In this section...

“Domain Types” on page 4-3

“Expression Types” on page 4-3

Domain Types
MuPAD stores all objects as elements of particular domains. There are two
types of domains in MuPAD: basic domains and library domains. The system
includes the basic domains written in C++. The names of the basic domains
start with DOM_. For example, the domain of integers DOM_INT, the domain
of rational numbers DOM_RAT, and the domain of identifiers DOM_IDENT
are basic domains. Most of the basic domains available in MuPAD are listed
in “Basic Domains”.

The system also includes library domains, such as the domain Dom::Matrix()
of matrices, the domain Dom::ArithmeticalExpression of arithmetical
expressions, the domain Dom::Interval of floating-point intervals, and the
domain stats::sample of statistical samples. Many library domains are listed
in “Library Domains”. Other library domains are listed in the corresponding
libraries. For example, you can find the library domain solvelib::BasicSet
of the basic infinite sets under the “Utilities for the Solver” category. The
library domains are written in the MuPAD programming language. You also
can create your own library domains.

Overloading works differently for the basic domains and the library domains.
The system can overload any method of a library domain. For basic domains,
the system overloads only some methods.

Expression Types
The basic domain DOM_EXPR includes MuPAD expressions, such as
expressions created by arithmetical or indexed operators, statements, and
function calls. MuPAD classifies the elements of the domain DOM_EXPR
further by defining expression types. Expression types provide more detailed
information about a particular expression. For example, you might want to
know whether the expression is an arithmetical expression, such as a sum

4-3

4 Programming Fundamentals

or a product, a Boolean expression, a function call, or some other type of
expression. For these expressions, the domtype function returns their domain
type DOM_EXPR:
domtype(a + b), domtype(a*b), domtype(a and b), domtype(sin(a)), domtype(a
= b)DOM_EXPR, DOM_EXPR, DOM_EXPR, DOM_EXPR, DOM_EXPR

To find the expression types of these expressions, use the type function:
type(a + b), type(a*b), type(a and b), type(sin(a)), type(a = b)"_plus", "_mult",
"_and", "sin", "_equal"

If an operator or a function has a “type” slot, the type function returns the
string value stored in that slot. For example, the “type” slot of the addition
operator contains the string value “_plus”, the “type” slot of the multiplication
operator contains “_mult”, the “type” slot of the sine function contains “sin”,
and so on.

An expression can include more than one operator. Typically, MuPAD
associates the expression type of such expressions with the lowest precedence
operator. If you visualize an expression as an expression tree, the lowest
precedence operator appears at the root of that tree. See Visualizing
Expression Trees for more information. For example, consider the
expression a + b*c. When evaluating this expression, the system performs
multiplication, and then performs addition. Therefore, the addition operator
is the lowest precedence operator in the expression. This operator determines
the expression type:
type(a + b*c)"_plus"

If the lowest precedence operator in the expression does not have a “type” slot,
the type function returns the string “function”:
type(f(a^2 + a + 2))"function"

4-4

Data Type Definition

The domtype and type functions return the same results for elements of most
MuPAD domains:
domtype(5/7), type(5/7); domtype(1.2345), type(1.2345); domtype(a),
type(a);DOM_RAT, DOM_RAT

DOM_FLOAT, DOM_FLOAT

DOM_IDENT, DOM_IDENT

If your code relies on the assumption that an object belongs to a particular
domain type or expression type, verify that assumption before executing the
code. To test whether a MuPAD object belongs to a particular type, use the
testtype function. Use this function to test both domain types and expression
types:
testtype(a + b, DOM_EXPR), testtype(a + b, "_plus")TRUE, TRUE

4-5

4 Programming Fundamentals

Choose Appropriate Data Structures
When you create a new MuPAD object, you choose the domain type of that
object either explicitly or implicitly. Typically, MuPAD does not require
you to declare domain types of simple objects, such as numbers, identifiers,
or expressions. The system associates an object with a particular domain
during run time.

When you create more complicated data structures, such as sets, lists, arrays,
matrices, procedures, and so on, the syntax that you use to create these
structures is a shortcut to the domain constructors. For example, matrix
is a shortcut for the domain constructor Dom::Matrix with the default ring
Dom::ExpressionField().

Also, when defining your own procedure, you can specify the types of
arguments accepted by that procedure. In this case, for every call to that
procedure, MuPAD automatically checks the types of provided arguments.
For more information, see Checking Types of Arguments.

The domtype function returns the name of a domain to which an object
belongs:
domtype([a, b, c])DOM_LIST

When choosing a data structure for a new object, try to answer these
questions:

• Which features are essential to the new object? For example, some
structures keep the initial order of elements, while other structures can
change the order. Another example is that you can create multidimensional
arrays, but you cannot create MuPAD matrices with more than two
dimensions.

• Which functions do you want to use on that object? Each MuPAD
function accepts only objects of particular domain types. If an object that
you pass to a function is not one of the acceptable domain types for that
function, the function issues an error. To determine the domain types
acceptable for a particular function, see the help page for that function. For

4-6

Choose Appropriate Data Structures

example, you cannot use standard mathematical operations for MuPAD
arrays.

If you already created an object, and then realized that it must belong to
another domain type, try to convert the domain type of the object. See
Converting Data Types.

4-7

4 Programming Fundamentals

Convert Data Types

In this section...

“Use the coerce Function” on page 4-9

“Use the expr Function” on page 4-10

“Use Constructors” on page 4-13

When creating new objects in MuPAD, the best practice is to consider which
domain the object must belong to. Choosing the correct data type from the
beginning helps you avoid unnecessary conversions. Nevertheless, some
computation tasks require data types conversions. For such tasks, MuPAD
enables you to convert the elements of some domains to elements of other
domains.

To convert an object to a different domain type, use one of the following
alternatives. Some of the alternatives do not work for conversions between
particular domains.

• “Use the coerce Function” on page 4-9. Call the coerce function to convert
an object to an element of a specified domain. The coerce function can call
the convert, convert_to, and coerce domain methods. If the conversion
is not possible or if none of these methods is implemented for the domains
participating in conversion, the coerce function returns FAIL.

• “Use the expr Function” on page 4-10. Call the expr function to convert
an object to an element of a basic domain. The expr function calls the
expr method. If the conversion is not possible or if the expr method is not
implemented for the specified domains, the expr function returns FAIL.

• “Use Constructors” on page 4-13. Call the domain constructor of the
domain to which you want to convert an object. This approach typically
works, but it can fail in some cases.

• Calling the conversion methods of a domain directly. To use this approach,
you must know which conversion methods are implemented for the
participating domains. This alternative is not recommended. Use the
coerce or expr function instead.

4-8

Convert Data Types

Note Note If you implement a new domain, consider implementing the
conversion methods for that domain.

Use the coerce Function
To convert a MuPAD object to an element of a specified domain, use the
coerce function. For example, convert the following element of the domain
DOM_LIST to an element of the domain DOM_SET:
L := [1, 2, 3, 4, 5, 6]; S := coerce(L, DOM_SET)[1, 2, 3, 4, 5, 6]

{1, 2, 3, 4, 5, 6}

domtype(L), domtype(S)DOM_LIST, DOM_SET

Results of the conversion can depend on the original domain type. For
example, create an array and a matrix with the same number of elements
and equal dimensions:
M := matrix(2, 3, [1, 2, 3, 4, 5, 6]); A := array(1..2, 1..3, [1, 2, 3, 4, 5,
6])matrix([[1, 2, 3], [4, 5, 6]])

array(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

Verify that matrix M belongs to the domain Dom::Matrix(), and array A
belongs to the domain DOM_ARRAY:

4-9

4 Programming Fundamentals

domtype(M), domtype(A)Dom::Matrix(), DOM_ARRAY

Use the coerce function to convert both objects to elements of the domain
DOM_LIST. The coerce function converts matrix M to a nested list, where
the inner lists represent the rows of the original matrix. At the same time,
coerce converts the array A to a flat list:
LM := coerce(M, DOM_LIST); LA := coerce(A, DOM_LIST)[[1, 2, 3], [4, 5, 6]]

[1, 2, 3, 4, 5, 6]

Both new objects belong to the basic domain of lists DOM_LIST:
domtype(LM), domtype(LA)DOM_LIST, DOM_LIST

For further computations, delete the identifiers L, S, M, A, LM, and LA:
delete L, S, M, A, LM, LA

Use the expr Function
To convert an element of a library domain to an element of a basic kernel
domain, use the expr function. This function does not allow you to select the
basic domain to which it converts an object. If the conversion to basic domains
is not possible, the function returns FAIL.

The expr function tries to find the simplest basic domain to which it can
convert a given object. The function also can convert an element of a more
complicated basic domain to the simpler basic domain. For example, it
converts the polynomial represented by a single variable x to the identifier x:
y := poly(x); expr(y)poly(x, [x])

4-10

Convert Data Types

x

The original object y belongs to the domain of polynomials. The result of
conversion belongs to the domain of identifiers DOM_IDENT:
domtype(y), domtype(expr(y))DOM_POLY, DOM_IDENT

If you call the expr function for a more complicated polynomial, the function
converts that polynomial to the expression:
p := poly(x^2 + x + 2); expr(p)poly(x^2 + x + 2, [x])

x^2 + x + 2

Again, the original polynomial belongs to the domain of polynomials. This
time, the result of the conversion belongs to the domain of expressions:
domtype(p), domtype(expr(p))DOM_POLY, DOM_EXPR

MuPAD can apply the expr function to an object recursively. If an object
contains terms that belong to library domains or complicated basic domains,
expr also tries to convert those terms elements of simpler basic domains. For
example, if the polynomial p is an element of a list, applying the expr function
to the list converts the polynomial p to the expression:

4-11

4 Programming Fundamentals

matrix(2, 2, [p, 0, 0, 1]); expr(matrix(2, 2, [p, 0, 0, 1]))matrix([[poly(x^2 +
x + 2, [x]), 0], [0, 1]])

array(1..2, 1..2, [[x^2 + x + 2, 0], [0, 1]])

The expr function converts a matrix of the library domain Dom::Matrix() to
an array of the basic kernel domain DOM_ARRAY:
M := matrix(2, 3, [1, 2, 3, 4, 5, 6])matrix([[1, 2, 3], [4, 5, 6]])

domtype(M), domtype(expr(M))Dom::Matrix(), DOM_ARRAY

The expr function converts an element of the series domain to the expression
of a basic domain DOM_EXPR. Typically, the order of terms in the resulting
expression changes:
s := series(exp(x), x); expr(s)1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + O(x^6)

x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

4-12

Convert Data Types

domtype(s), domtype(expr(s))‘Series::Puiseux‘, DOM_EXPR

For further computations, delete the identifiers y, p, M, and s:
delete y, p, M, s

Use Constructors
Instead of calling the conversion functions, you can use the constructor of a
domain to which you want to convert an object. This approach works for most
conversions, but it can fail in some cases.

Calling the constructor of the required domain is often the simplest way to
convert an object to the element of that domain. Suppose you want to convert
the following list L to a matrix:
L := [1, 2, 3, 4, 5, 6][1, 2, 3, 4, 5, 6]

To convert a list to a matrix, call the matrix constructor matrix. Use the
arguments of the matrix constructor to specify the dimensions of the required
matrix and the list L of the elements of a matrix. The resulting object is the 2
3 matrix of the domain Dom::Matrix():
matrix(2, 3, L); domtype(%)matrix([[1, 2, 3], [4, 5, 6]])

Dom::Matrix()

Alternatively, you can convert a list to a matrix by using Dom::Matrix():
Dom::Matrix()(2, 3, L); domtype(%)matrix([[1, 2, 3], [4, 5, 6]])

4-13

4 Programming Fundamentals

Dom::Matrix()

For further computations, delete the identifier L:
delete L

4-14

Define Your Own Data Types

Define Your Own Data Types
MuPAD provides many predefined domains for a wide variety of symbolic
and numeric computations. The system is also extensible. If the predefined
MuPAD domains do not satisfy your needs, you can create your own domains
and define operations on their elements. Also, MuPAD allows you to change
the existing library domains, although this approach is not recommended. To
create a new domain, use the newDomain function. For example, create the
domain TempF that represents the Fahrenheit temperature scale:
TempF := newDomain("TempF"):Currently the new domain does not have
any elements. To create an element of a domain, use the new function. For
example, create the new element x of the domain TempF:
x := new(TempF, 15)new(TempF, 15)

To verify that the object x belongs to the domain TempF, use the testtype
function. You can also use the domtype or type function:
testtype(x, TempF), domtype(x), type(x)TRUE, TempF, TempF

To check the internal representation of x, use the extop function:
extop(x)15

Suppose you want the new method of the domain TempF to check whether an
input argument is a valid temperature measurement. In this case, redefine
the new method for your domain TempF:
TempF::new := t -> if testtype(t, Type::Real) then if t >= -459.67 then
new(dom, t); else error("Temperature is below absolute zero."); end_if; else
error("Expecting a real number above absolute zero."); end_if:The redefined
method checks that an input argument is a number. It also checks that the
provided temperature is not below absolute zero. Absolute zero is zero degrees
on the Kelvin temperature scale, which is equivalent to -459.67 degrees on

4-15

4 Programming Fundamentals

the Fahrenheit scale. The redefined method creates new elements in degrees
Fahrenheit. Call the method TempF::new directly or use the shorter syntax
TempF(newElement):
TempF::new(0), TempF(32)new(TempF, 0), new(TempF, 32)

The TempF::new method also ensures that all new elements represent valid
temperatures:
TempF(-500) Error: Temperature is below absolute zero. [TempF::new] The
TempF::new method requires new elements to be real numbers:
TempF(x + 2) Error: Expecting a real number above absolute zero.
[TempF::new] TempF(1 + 2*I) Error: Expecting a real number above absolute
zero. [TempF::new] As a next step, improve the output format for the
elements of your new domain. To change the format that MuPAD uses for
displaying the elements of a domain, redefine the print method for that
domain. For example, when displaying elements of the domain TempF::new,
show temperature measurements followed by the units of measurements
(degrees Fahrenheit):
TempF::print := proc(TempF) begin expr2text(extop(TempF,
1)).Symbol::deg."F" end_proc:Now, MuPAD displays the elements of the
domain TempF::new as follows:
TempF(32), TempF(72), TempF(90), TempF(104.8)‘32°F‘, ‘72°F‘,
‘90°F‘, ‘104.8°F‘

Suppose you want to perform additions for the elements of the new domain.
By default, arithmetical operations treat the elements of a new domain as
identifiers:
TempF(75) + TempF(10)‘10°F‘ + ‘75°F‘

4-16

Define Your Own Data Types

You can implement arithmetical operations for your domain. For example,
define addition for the domain TempF. The result of addition must also belong
to the domain TempF:
TempF::_plus := proc() local elements; begin elements:= map([args()], op, 1);
new(TempF, _plus(op(elements))) end_proc:The system add the elements of
your new domain the same way as it adds numbers. The system also displays
the degrees Fahrenheit unit for the resulting sum:
TempF(75) + TempF(10)‘85°F‘

For further computations, delete the identifier x:
delete x

4-17

4 Programming Fundamentals

Access Arguments of a Procedure
The terms parameters and arguments are often used interchangeably.
Strictly speaking, the term parameters means object names that you specify
while defining a procedure. The term arguments means objects that you use
while calling a procedure. This documentation also uses the term formal
parameters for parameters and the term actual parameters for arguments.

Many programming languages require the number of parameters to be
equal to the number of arguments. MuPAD does not have this requirement.
Therefore, you can call a procedure with the number of arguments different
from the number of specified parameters. If you call a procedure using fewer
arguments than parameters, the system treats additional parameters as
additional local variables without specified values. If you call a procedure
using more arguments than parameters, the system does not disregard these
additional parameters, but enables you to access them.

The args function lets you access the arguments of a current procedure call.
The call args(i), where i is a positive integer, returns the ith argument
of the current procedure call. The call args(0) returns the total number
of arguments in the current procedure call. For example, the following
procedure computes the sum of its arguments in each procedure call:
f := proc() begin _plus(args(i) $ i = 1..args(0)): end_proc:The procedure works
for any number of arguments:
f(), f(100), f(1, 2, 3, 4, 5), f(a, b, c), f(x $ x = 1..1000)0, 100, 15, a + b + c, 500500

Also, you can access the whole sequence of arguments or any subsequence of
that sequence. For example, the following procedure prints all arguments
used in the current call. If the current call uses three or more arguments, the
procedure also prints its first three arguments:
g := proc() begin print(Unquoted, "all arguments" = args()): if args(0) > 2 then
print(Unquoted, "first three arguments" = args(1..3)): else print(Unquoted,
"not enough arguments"): end_if end_proc:Call the procedure g with five
arguments:
g(10, 20, 30, 40, 50) all arguments = (10, 20, 30, 40, 50) first three arguments
= (10, 20, 30) When you pass arguments to a procedure, MuPAD evaluates

4-18

Access Arguments of a Procedure

these arguments. Then the system creates a local variable for each formal
parameter specified in the procedure definition. The system assigns evaluated
arguments to these local variables. Parameters outside the procedure do
not change. For example, assign a new value to a formal parameter inside
the procedure:
h := proc(a) begin a := b; print(args()): end_proc:Assigning a new value to a
formal parameter inside a procedure does not affect the parameter itself.
This assignment affects the result returned by args. For example, if you pass
any argument to the procedure h, that argument changes to a variable b
inside the procedure:
h(100)b

The formal parameter a does not change its value outside the procedure:
aa

For further computations, delete the procedures f, g, and h:
delete f, g, h

4-19

4 Programming Fundamentals

Test Arguments

In this section...

“Check Types of Arguments” on page 4-20

“Check Arguments of Individual Procedures” on page 4-21

Check Types of Arguments
When writing a MuPAD procedure, you can specify the type of arguments
accepted by the procedure. To define a procedure that accepts only particular
types of arguments, specify the expected types when defining the formal
parameters of a procedure. For example, the formal parameter of the following
procedure accepts only those arguments that belong to the domain DOM_INT:
f:= proc(k:DOM_INT) begin sin(PI*k/4) end_proc:Therefore, only an integer
number is a valid first argument for this procedure:
f(1)sqrt(2)/2

The system compares the type of the formal parameter k and the type of an
argument passed to the procedure. If the first argument that you pass to the
procedure f is not an integer, MuPAD issues an error:
f(2/3) Error: The type of argument number 1 must be ’DOM_INT’. The
object ’2/3’ is incorrect. Evaluating: f During a typical procedure call, for
example a call to the solve or int function, MuPAD internally calls many
other procedures. Testing argument types for each internal procedure call is
computationally expensive. To provide better performance, MuPAD reduces
the amount of type checks in the running code. By default, the system checks
the types of arguments only in those procedures that you call interactively.
If one procedure internally calls another procedure, MuPAD does not check
types of the arguments of the internally called procedure. For example, create
the following procedure g as a wrapper for the procedure f:
g := proc(n:Type::Numeric) begin f(n) end_proc:MuPAD performs type checks
only for the arguments of the procedure g, which you call interactively. It does
not perform type checks for the arguments of the procedure f:
g(2/3)1/2

4-20

Test Arguments

The Pref::typeCheck function enables you to control type checking of
procedure arguments. This function affects all procedures. It does not allow
you to control type checking for individual procedures. The default setting
of Pref::typeCheck is Interactive:
Pref::typeCheck()Interactive

To perform type checks in all procedure calls, including internal calls, set the
value of Pref::typeCheck to Always:
Pref::typeCheck(Always):Now, the system realizes that 2/3 is not a valid
argument of the internally called procedure f:
g(2/3) Error: The type of argument number 1 must be ’DOM_INT’. The object
’2/3’ is incorrect. Evaluating: f To disable type checks in all procedure calls,
including interactive calls, set the value of Pref::typeCheck to None:
Pref::typeCheck(None):Now, the system does not check argument types in
any procedure calls:
g(2/3), f(2/3)1/2, 1/2

To restore the default setting of Pref::typeCheck, use the NIL option:
Pref::typeCheck(NIL):

Check Arguments of Individual Procedures
When writing a procedure in MuPAD, you can include your own tests for the
procedure arguments inside the procedure itself. You can test types, values,
or any other properties of the arguments of a procedure. For example, create
the procedure that calculates the arcsine function of a real number. Suppose,
you want to limit possible results of this procedure to real numbers. In this
case, an input argument of the procedure must belong to the interval [-1,1].

4-21

4 Programming Fundamentals

To ensure that the procedure accepts only the values from this interval, test
the value of an input argument inside the procedure:
p := proc(x:Dom::Real) begin if abs(x) > 1 then error("invalid number. Choose
a value from the interval [-1,1]."); end_if; arcsin(x) end_proc:Typically,
when you call one MuPAD procedure, that procedure internally calls other
MuPAD procedures. Some of these internal calls are multiple calls to the
same procedure with different sets of arguments. Testing arguments for each
internal procedure call can become computationally expensive. By default,
the system uses the following general principle for testing arguments of a
typical MuPAD procedure:

• If you call a procedure interactively, the procedure performs all argument
checks.

• If one procedure internally calls another procedure, the second procedure
skips argument checks.

Currently, the procedure p always checks whether the value of its argument
belongs to the interval [-1,1]. To follow the general principle for testing
arguments, the procedure must be able to recognize internal and interactive
calls, and skip argument checking when a call is internal. For this task,
MuPAD provides the testargs function. When you call testargs inside an
interactive procedure call, testargs returns the value TRUE. For internal
procedure calls, testargs returns the value FALSE by default. For example,
rewrite your procedure p as follows:
p := proc(x) begin if testargs() then if abs(x) > 1 then error("invalid
number. Choose a value from the interval [-1,1]."); end_if; end_if; arcsin(x)
end_proc:When you call the procedure p, it checks whether the input
argument belongs to the specified interval:
p(1/2), p(1), p(0)PI/6, PI/2, 0

p(10) Error: invalid number. Choose a value from the interval [-1,1]. [p] Now,
write the simple wrapper procedure f that calls the procedure p:
f := proc(x) begin p(x) end_proc:When the wrapper procedure f calls p, the
procedure p does not check its arguments because testargs returns the value
FALSE:
f(10)arcsin(10)

4-22

Test Arguments

The testargs function also allows you to switch to the argument checking
mode. In this mode, MuPAD checks arguments of all procedures, regardless of
how a procedure is called. This mode can slow down your computations. Use
this mode only for debugging your code. To switch to the argument checking
mode, set the value of testargs to TRUE:
testargs(TRUE):In the argument checking mode, the procedure p checks its
argument during interactive and internal calls:
p(10) Error: invalid number. Choose a value from the interval [-1,1]. [p] f(10)
Error: invalid number. Choose a value from the interval [-1,1]. [p] Always
restore testargs to its default value FALSE after you finish debugging:
testargs(FALSE):

4-23

4 Programming Fundamentals

Verify Options
For many standard MuPAD procedures, you can use different options. If
a MuPAD procedure accepts options, it has an embedded mechanism for
collecting and verifying these options. For example, the solve function accepts
the Real option. The option indicates that the solver must return only real
solutions and accepts the values TRUE and FALSE. If an option accepts
only TRUE and FALSE values, you can provide the option name without
specifying its value:
solve(x^4 - 1 = 0, x, Real){-1, 1}

If you do not specify the Real option, the solver uses the default option value
FALSE, and returns all complex solutions of the equation:
solve(x^4 - 1 = 0, x){-1, 1, -I, I}

You can explicitly specify the option-value pair, for example, Real = TRUE
or Real = FALSE:
solve(x^4 - 1 = 0, x, Real = TRUE); solve(x^4 - 1 = 0, x, Real = FALSE){-1, 1}

{-1, 1, -I, I}

If you provide an unexpected option (for example, if you spell the option name
incorrectly), MuPAD issues an error indicating the wrong option. If there are
several wrong options, MuPAD indicates the first wrong option:
solve(x^4 - 1 = 0, x, Rea, Rel) Error: The argument number 3 is invalid.
Evaluating: solvelib::getOptions You can embed the same option checking
mechanism in your own procedures. For this task, MuPAD provides the

4-24

Verify Options

prog::getOptions function, which collects and verifies options used during a
procedure call. When a user calls your procedure, prog::getOptions scans all
arguments and returns a table that contains all expected options and their
values. It also returns a list of all unexpected options.

When you pass arguments to prog::getOptions, always use the following
order. The first argument of prog::getOptions is the number n + 1, where n
is the number of required (non-optional) arguments of the procedure. Then
you must provide the list of all actual arguments followed by the table of
all acceptable options and their default values. To access a sequence of all
arguments of a procedure call, including required arguments and options,
use the args function.

The following example demonstrates the procedure that accepts the numeric
coefficients a, b, and c and solves the quadratic equation ax2 + bx + c = 0 using
these coefficients. The procedure solveQuadraticEqn requires the user to
provide three numeric values. Therefore, if you embed prog::getOptions into
this procedure, the first parameter of prog::getOptions must be the number
4. The procedure also accepts the optional argument PositiveOnly. If the
value of PositiveOnly is TRUE, the procedure returns only positive solutions
of the quadratic equation. If the value is FALSE, the procedure returns all
solutions. The following function call to prog::getOptions sets the default
option value PositiveOnly = FALSE:
solveQuadraticEqn := proc(a:Type::Numeric, b:Type::Numeric,
c:Type::Numeric) local options, S; begin options := prog::getOptions(4,
[args()], table(PositiveOnly = FALSE)); S := solve(a*x^2 + b*x + c = 0, x); if
options[1][PositiveOnly] = TRUE then S := select(S, testtype, Type::Positive)
end_if: return(S) end_proc:If you call solveQuadraticEqn without the
PositiveOnly option, the procedure returns all solutions of the quadratic
equation:
solveQuadraticEqn(2, 3, -9){-3, 3/2}

If you use the PositiveOnly option, the procedure returns only positive
solutions:
solveQuadraticEqn(2, 3, -9, PositiveOnly){3/2}

4-25

4 Programming Fundamentals

By default, prog::getOptions does not error when it finds an unexpected
option (an option that is not listed in the table of accepted options). Instead,
it collects all unexpected options and returns them in a separate list. Thus,
the procedure solveQuadraticEqn does not issue an error when you spell
the option name incorrectly:
solveQuadraticEqn(2, 3, -9, Positive){-3, 3/2}

The prog::getOptions function can issue an error when it finds an unexpected
option. In a function call to prog::getOptions, the fourth argument indicates
whether prog::getOptions must silently collect unexpected options or issue
an error. This argument is optional. By default, it is set to FALSE. To issue
an error instead of listing unexpected arguments, use TRUE as the fourth
argument of prog::getOptions:
solveQuadraticEqn := proc(a:Type::Numeric, b:Type::Numeric,
c:Type::Numeric) local options, S; begin options := prog::getOptions(4, [args()],
table(PositiveOnly = FALSE), TRUE); S := solve(a*x^2 + b*x + c = 0, x); if
options[1][PositiveOnly] = TRUE then S := select(S, testtype, Type::Positive)
end_if: return(S) end_proc:Now, the procedure solveQuadraticEqn issues an
error. The error message indicates the wrong option:
solveQuadraticEqn(2, 3, -9, Positive) Error: The argument number 4 is
invalid. Evaluating: solveQuadraticEqn

4-26

Trace Procedures, Domains, Methods, and Function Environments

Trace Procedures, Domains, Methods, and Function
Environments

MuPAD provides two alternatives for debugging your code. First, you can
use the MuPAD GUI debugger to debug your code interactively, observing
execution of the code step by step. Another alternative is to generate a report
showing the steps that were taken while executing your code. The mode in
which MuPAD generates a report while executing a procedure, domain,
method, or function environment is called the tracing mode. This mode is
helpful for multistep procedures that require a long time to execute. Use
this approach to debug a particular procedure, domain, method, or function
environment, for which you want to print a report.

When debugging, you also can use the print and fprint functions for printing
intermediate results produced by your code.

Suppose, you want to create a procedure that computes the Lucas numbers.
The Lucas numbers are a sequence of integers. The recursion formula that
defines the nth Lucas number is similar to the definition of the Fibonacci
numbers:
L[0]=1, L[1]=3, _outputSequence(L[(n+2)]=L[n]+L[(n+1)], ‘.‘)

Although MuPAD does not provide a function that computes the Lucas
numbers, writing your own procedure for this task is easy:
lucas:= proc(n:Type::PosInt) begin if n = 1 then 1 elif n = 2 then 3 else lucas(n
- 1) + lucas(n - 2) end_if end_proc:The procedure call lucas(n) returns the nth
Lucas number. For example, display the first 10 Lucas numbers:
lucas(n) $ n = 1..101, 3, 4, 7, 11, 18, 29, 47, 76, 123

Suppose you want to trace this procedure. To switch execution of a particular
procedure, domain, method, or function environment to the tracing mode, use
the prog::trace function. For example, to trace the lucas procedure, enter:

4-27

4 Programming Fundamentals

prog::trace(lucas):Now, if you call the lucas procedure, the trace mechanism
observes every step of the procedure call and generates the report for that call:
lucas(5)enter lucas(5) enter lucas(4) enter lucas(3) enter lucas(2) computed 3
enter lucas(1) computed 1 computed 4 enter lucas(2) computed 3 computed 7
enter lucas(3) enter lucas(2) computed 3 enter lucas(1) computed 1 computed
4 computed 11 11

The prog::traced() function call returns the names of all currently traced
procedures, domains, methods, and function environments:
prog::traced()[lucas]

By using different options of the prog::trace function, you can customize
generated reports. Most of these options are independent of a particular
procedure call. They affect all reports generated after you use an option. See
the prog::trace help page for more details.

If a procedure uses many nested procedure calls, the generated report for that
procedure can be very long. To limit the number of nested procedure calls in a
report, use the Depth option of prog::trace:
prog::trace(Depth = 2):lucas(5)enter lucas(5) enter lucas(4) computed 7 enter
lucas(3) computed 4 computed 11 11

The Depth option affects all reports generated for further calls to procedures,
domains, methods, and function environments. If you do not want to use
this option for further calls, set its value to 0. The value 0 indicates that
prog::trace must display all nested calls:
prog::trace(Depth = 0):To display memory usage in each step of the procedure
call, use the Mem option:
prog::trace(Mem):lucas(5)enter lucas(5) [mem: 5636064] enter lucas(4) [mem:
5636544] enter lucas(3) [mem: 5636944] enter lucas(2) [mem: 5637344]

4-28

Trace Procedures, Domains, Methods, and Function Environments

computed 3 [mem: 5637060] enter lucas(1) [mem: 5637424] computed 1
[mem: 5637140] computed 4 [mem: 5636756] enter lucas(2) [mem: 5637120]
computed 3 [mem: 5636836] computed 7 [mem: 5636356] enter lucas(3) [mem:
5636720] enter lucas(2) [mem: 5637120] computed 3 [mem: 5636836] enter
lucas(1) [mem: 5637200] computed 1 [mem: 5636916] computed 4 [mem:
5636532] computed 11 [mem: 5636052] 11

To stop using the Mem option for further calls, set its value to FALSE:
prog::trace(Mem = FALSE):To stop tracing calls to the lucas procedure, use
the prog::untrace function:
prog::untrace():

4-29

4 Programming Fundamentals

Display Progress

In this section...

“Embed Status Messages in Procedures” on page 4-30

“Display Status Messages” on page 4-31

Embed Status Messages in Procedures
By default, MuPAD procedures do not show progress information or comments
on run time. For example, create the following procedure that returns the
sign of an input number. (MuPAD provides the standard function sign for
this task.)
S := proc(z:Type::Numeric) begin if not(testtype(z, Dom::Real)) then z/abs(z)
elif z > 0 then 1 elif z < 0 then -1 else 0 end_if end_proc:When you execute this
procedure, it returns only the final result:
S(10)1

Typically, the final result is all that your users want to see. However,
if executing a procedure takes a long time or if users can benefit from
the comments on some procedure steps, you can extend the procedure to
include additional information. To embed the progress information into your
procedure, use the userinfo function. This function enables you to specify the
information level for each message. The information level setting allows your
users to control the level of details printed while the procedure executes. To
specify the information level of a particular message, use a positive integer as
a first parameter of userinfo. For basic information about the progress of a
procedure, set information levels to lower values. For more detailed progress
information, specify higher information levels.

Note Note If you use an invalid argument, such as any negative number
or zero, to specify the information level of a particular message, MuPAD
automatically sets the information level to 1.

4-30

Display Progress

For example, modify the procedure S so it reports its progress. Using three
information levels allows your users to control the level of details printed
while this procedure executes:
S := proc(z:Type::Numeric) begin userinfo(3, "Is ".expr2text(z)." a real
number?"); if not(testtype(z, Dom::Real)) then userinfo(1, expr2text(z)."
is a complex number. Computing the sign of ".expr2text(z)." as z/|z|");
z/abs(z); else userinfo(2, expr2text(z)." is a real number"); userinfo(3, "Is
".expr2text(z)." a positive number?"); if z > 0 then userinfo(1, expr2text(z)." is a
positive number"); 1 else userinfo(2, expr2text(z)." is not a positive number");
userinfo(3, "Is ".expr2text(z)." a negative number?"); if z < 0 then userinfo(1,
expr2text(z)." is a negative number"); -1 else userinfo(2, expr2text(z)." is not
a negative number"); userinfo(1, expr2text(z)." is zero."); 0 end_if end_if
end_if end_proc:

Display Status Messages
The default information level is 0. MuPAD does not print any messages
specified by the userinfo function:
S(-6)-1

To change the information level, use the setuserinfo function. The first
argument of setuserinfo specifies a procedure for which you want to change
the information level. The second argument specifies the required information
level. For example, increase the information level for the procedure S to 1:
setuserinfo(S, 1): S(0)Info: 0 is zero. 0

Increase the information level for the procedure S to 2. Now, the procedure
call displays more status messages that describe each step of the procedure:
setuserinfo(S, 2): S(0)Info: 0 is a real number Info: 0 is not a positive number
Info: 0 is not a negative number Info: 0 is zero. 0

4-31

4 Programming Fundamentals

If you increase the information level to 3, the procedure S displays all status
messages. Increasing the information level further does not change the result:
setuserinfo(S, 100): S(0)Info: Is 0 a real number? Info: 0 is a real number
Info: Is 0 a positive number? Info: 0 is not a positive number Info: Is 0 a
negative number? Info: 0 is not a negative number Info: 0 is zero. 0

By default, each status message starts with the word “Info”. To suppress “Info”
at the beginning of status messages, call setuserinfo with the Quiet option:
setuserinfo(S, 3, Quiet): S(3 + 4*I)Is 3 + 4*I a real number? 3 + 4*I is a
complex number. Computing the sign of 3 + 4*I as z/|z| 3/5 + (4/5)*I

The setuserinfo function can also increase the information level for all
procedures calls, including calls to all predefined MuPAD functions and
your own procedures and functions. To increase the information level for
all procedure calls, use the argument Any instead of specifying a particular
procedure. For example, increase the information level to 100, and then call
the solve function:
setuserinfo(Any, 100): solve(sin(x) = 1, x)Info: solving sin(x) = 1 for x Info:
Solving for x Info: solve_eq called with equation sin(x) - 1 Info: trying to
isolate x in sin(x) - 1 = 0 Info: Iteration 1 Info: Equation transformed by
solvelib::constantsToRhs to sin(x) = 1 Info: Iteration 2 Info: Constructing
domain Dom::ImageSet Info: Results of homogenous operation: [Z_] Info:
Trying binary operation for operands Z_ and PI Info: set global for rectform:
{_X, _Y} Info: Results of homogenous operation: [Dom::ImageSet(PI*k, k,
Z_)] Info: Trying binary operation for operands Dom::ImageSet(PI*k, k,
Z_) and 2 Info: Results of homogenous operation: [Dom::ImageSet(2*PI*k,
k, Z_)] Info: Trying binary operation for operands Dom::ImageSet(2*PI*k,
k, Z_) and PI/2 Info: Results of homogenous operation: [Z_] Info: Trying
binary operation for operands Z_ and PI Info: Results of homogenous
operation: [Dom::ImageSet(PI*k, k, Z_)] Info: Trying binary operation for
operands Dom::ImageSet(PI*k, k, Z_) and 2 Info: Results of homogenous
operation: [Dom::ImageSet(2*PI*k, k, Z_)] Info: Trying binary operation

4-32

Display Progress

for operands Dom::ImageSet(2*PI*k, k, Z_) and PI/2 Info: Equation
transformed by solvelib::isolateStep to x in Dom::ImageSet(PI/2 + 2*PI*k, k,
Z_) Dom::ImageSet(PI/2 + 2*PI*k, k, Z_)

setuserinfo(NIL):

4-33

4 Programming Fundamentals

Use Assertions
If you rely on correctness of particular statements for your code, then consider
including these statements in the code. Such statements are called assertions.
Assertions help you remember specific conditions under which you expected
to execute your code. They can also help other developers who might need to
review or update your code.

MuPAD lets you use checked assertions. If you switch to a special mode of
executing your code, the system evaluates assertions during run time. If
an assertion does not evaluate to TRUE, the system stops code execution
and throws an error.

For example, this procedure solves the equation sin(x) + cos(x) = a2. Suppose
you get the parameter a as a result of some computations, and you expect

the condition a^2 <= sqrt(2) to be always valid. Relying on this
condition, you expect the solutions to be real. Specify this condition as an
assertion by using assert:
f := proc(a) begin assert(a^2 <= sqrt(2)); s := solve(sin(x) + cos(x) = a^2)
end:Assertions are checked only when you run your code in a special mode
called the argument checking mode. Otherwise, the system ignores all
assertions. For example, in this procedure call, MuPAD skips the assertion
and returns the following complex result:
f(4/3)matrix([[x]]) in Dom::ImageSet(matrix([[- ln(8/9 - ((-1)^(1/4)*sqrt(47))/9
+ (8/9)*I)*I + 2*PI*k]]), k, Z_) union Dom::ImageSet(matrix([[-
ln(((-1)^(1/4)*sqrt(47))/9 + 8/9 + (8/9)*I)*I + 2*PI*k]]), k, Z_)To switch to the
argument checking mode, set the value of testargs to TRUE:
testargs(TRUE):Now when you call the procedure f, MuPAD checks the
assertion. For a = 4/3, the assertion evaluates to FALSE, and the procedure
execution stops with the error:
f(4/3) Error: Assertion ’a^2 <= sqrt(2)’ has failed. [f] For a = 1, the assertion
evaluates to TRUE. The procedure call runs to completion, and returns the
following set of real solutions:
f(1)matrix([[x]]) in Dom::ImageSet(matrix([[2*PI*k]]), k, Z_) union
Dom::ImageSet(matrix([[PI/2 + 2*PI*k]]), k, Z_)The argument checking mode
can slow down your computations. Use this mode only for debugging your
code. Always restore testargs to its default value FALSE after you finish
debugging:
testargs(FALSE):

4-34

Write Error and Warning Messages

Write Error and Warning Messages
When writing a procedure in MuPAD, you can include error and warning
messages in your procedure. If the system encounters an error while
executing a procedure, it terminates execution of the procedure and displays
an error message. If the system encounters a warning, it prints the warning
message and continues executing the procedure. You can specify your own
error and warning messages.

The error function terminates execution of a current procedure with an error.
For example, the following procedure converts the number of a month to the
name of a month. The procedure checks the type of its argument and accepts
only positive integer numbers. Since there are only 12 months in a year,
the procedure must also ensure that the number does not exceed 12. The
error function lets you terminate the procedure call with an appropriate error
message if the number is greater than 12:
monthNumberToName := proc(n:Type::PosInt) begin if n > 12 then
error("Invalid number. The number must not exceed 12.") end_if; case n of
1 do return(January) of 2 do return(February) of 3 do return(March) of 4 do
return(April) of 5 do return(May) of 6 do return(June) of 7 do return(July) of 8
do return(August) of 9 do return(September) of 10 do return(October) of 11
do return(November) of 12 do return(December) end_case: end:If you call
monthNumberToName with any integer from 1 to 12, the procedure returns
the name of a month:
monthNumberToName(12)December

If you call monthNumberToName with an integer greater than 12, the procedure
terminates with the specified error:
monthNumberToName(13) Error: Invalid number. The number must not
exceed 12. [monthNumberToName] Warning messages help you inform your
users about potential problems in the algorithm. These problems are typically
minor and do not interfere with the execution of a procedure. For example,
you can warn your users about limited functionality of a procedure or about
implicit assumptions made by a procedure.

4-35

4 Programming Fundamentals

The following procedure uses the simplify function to simplify the fraction.
The function implicitly assumes that the variable x is not equal to a. If your
procedure uses the simplify function, you can add the following warning for
your users:
simplifyW := proc(a) begin warning("Assuming x <> ".expr2text(a));
simplify((x^2 - a^2)/(x - a)) end:Now, your procedure informs its users about
the assumption:
simplifyW(10) Warning: Assuming x <> 10 [simplifyW] x + 10

4-36

Handle Errors

Handle Errors
Typically, when a MuPAD procedure encounters an error caused by evaluation
of an object, the procedure terminates, the system returns to an interactive
level and displays an error message. If you want to avoid terminating a
procedure, use the traperror function to catch an error.

The traperror function returns the error number instead of the error itself.
Later, you can reproduce the error by using the lasterror function. This
function produces the last error that occurred in the current MuPAD session.
If you call lasterror inside a statement or a procedure, it terminates that
statement or procedure. If you want to display the error message without
throwing the error itself, save the error number returned by traperror, and
then retrieve the message by using the getlasterror function.

For example, the function f throws an error when sin(πk) is equal to zero:
f := (k) -> 1/sin(PI*k)k -> 1/sin(PI*k)

f(1) Error: Division by zero. [_invert] Evaluating: f Suppose you want to

compute f for the values - π ≤ k ≤ π increasing the value of k by PI/4 in each
step. To call the function f for all required values, create the for loop. When
you try to execute this statement, it terminates as soon as the function f
encounters division by zero for the first time. To avoid terminating the for
statement, use the traperror function to catch the error. To display the text
of that error message without interrupting execution of the for statement,
use getlasterror():
for k from -1 to 1 step 1/4 do err := traperror(f(k)): if err = 0 then
print(Unquoted, "k = ".expr2text(k), "f = ".expr2text(f(k))) else print(Unquoted,
"k = ".expr2text(k), getlasterror()) end_if end_for k = -1, 1025, Error: Division
by zero. [_invert] [Evaluating: f] k = -3/4, f = -2^(1/2) k = -1/2, f = -1 k = -1/4, f
= -2^(1/2) k = 0, 1025, Error: Division by zero. [_invert] [Evaluating: f] k =
1/4, f = 2^(1/2) k = 1/2, f = 1 k = 3/4, f = 2^(1/2) k = 1, 1025, Error: Division
by zero. [_invert] [Evaluating: f] For errors created with the error function,
including your custom error messages, traperror always returns the error
code 1028. If an error message with the code 1028 is the last error message
that occurred in a MuPAD session, you can retrieve that error message by

4-37

4 Programming Fundamentals

using lasterror or getlasterror. For example, create the procedure g that
computes the factorial of any number less than 10. If you pass a number
greater than 10 to this procedure, the procedure reduces the number to 10,
and then computes the factorial:
g := proc(n:Type::PosInt) local test; begin test := proc() begin if n > 10 then
error("The number must not exceed 10.") end_if end_proc: if traperror(test(n))
<> 0 then g(n - 1) else n! end_if; end_proc:Call the procedure with the number
100. During run time, the procedure encounters the error, but does not
terminate. It also does not display the error message. Instead, it returns
the result:
g(100)3628800

To retrieve and display the error message caught during execution of the
procedure g, use the lasterror function:
lasterror() Error: The number must not exceed 10. [test] To display the error
code and the text of that message, use the getlasterror function:
g(100): getlasterror()[1028, "Error: The number must not exceed 10. [test]"]

4-38

When to Analyze Performance

When to Analyze Performance
Symbolic computations can be very time consuming. For many tasks, MuPAD
provides its own, optimized functions. When you use these functions, the
system typically chooses algorithms that provide the best performance for
your task.

However, in some cases you might want to measure and investigate your
code performance. This task is also called profiling. For example, profiling
is helpful when you:

• Feel that your code runs too slowly.

• Want to estimate the performance of a particular computation algorithm.

• Want to compare performances of different algorithms.

• Define and use your own data types and methods.

MuPAD provides tools to measure the running time of a particular code
snippet or the whole MuPAD session. The system also provides the profiling
tool to help you find and eliminate performance bottlenecks in your code.

4-39

4 Programming Fundamentals

Measure Time

In this section...

“Calls to MuPAD Processes” on page 4-40

“Calls to External Processes” on page 4-41

Calls to MuPAD Processes
The simplest tool you can use to estimate code performance is the time
function. This function measures the running time of your code snippet. The
time function does not count the time spent outside of MuPAD processes:
external function calls or processes running in the background do not affect
the results of time. The function returns results measured in milliseconds.

The following example demonstrates different algorithms implemented for
the same task. The task is to check whether each integer from 1 to 1000
appears in a 1000 1000 matrix of random integers. To create a 1000 1000
matrix of random integers, use linalg::randomMatrix:
matrixSize := 1000: M := linalg::randomMatrix(matrixSize, matrixSize,
Dom::Integer):The direct approach is to write a procedure that checks every
element of a matrix proceeding row by row and column by column:
f := proc(M, n, x) begin for j from 1 to n do for k from 1 to n do if M[j, k] = x
then return(TRUE) end_if end_for end_for; return(FALSE) end_proc:Call the
procedure f 1000 times to check if each number from 1 to 1000 appears in
that matrix:
g := proc() begin f(M, matrixSize, i) $ i = 1..1000 end_proc:This algorithm is
very inefficient for the specified task. The function f performs 104 computation
steps to find out that an integer does not occur in the matrix M. Since you call
the function f 1000 times, executing this algorithm takes a long time:
time(g()) 62435.902 In this example, the bottleneck of the chosen approach
is obviously the algorithm that accesses each matrix element. To accelerate
the computation, rewrite the procedure f using the bisection method. Before
using this method, convert the matrix M to a list and sort the list. Then select
the first and last elements of the sorted list as initial points. Each step in this
algorithm divides the list of elements at the midpoint:
f := proc(M, n, x) begin if (M[1] - x)*(M[n] - x) > 0 then return(FALSE) elif
(M[1] - x)*(M[n] - x) = 0 then return(TRUE); else a := 1: b := n: while (b - a > 1)
do if is(b - a, Type::Odd) then c := a + (b - a + 1)/2 else c := a + (b - a)/2 end_if; if

4-40

Measure Time

M[c] - x = 0 then return(TRUE) elif (M[a] - x)*(M[c] - x) < 0 then b := c: else a
:= c: end_if; end_while; end_if; return(FALSE) end_proc:Use the op function
to access all elements of the matrix M. This function returns a sequence of
elements. Use brackets to convert this sequence to a list. Then use the sort
function to sort the list in ascending order. Finally, call the procedure f for
each integer from 1 to 1000:
g := proc() local M1; begin M1 := sort([op(M)]): f(M1, matrixSize^2, i) $ i =
1..1000 end_proc:Using the bisection method instead of accessing each matrix
element significantly improves the performance of the example:
time(g()) 3724.233 Typically, the best approach is to use the appropriate
MuPAD functions whenever possible. For example, to improve performance
further, rewrite the code using the MuPAD function has. Also, converting
a matrix to a set can reduce the number of elements. (MuPAD removes
duplicate elements of a set.) In addition to speed up, this approach makes
your code significantly shorter and easier to read:
g := proc() local M1; begin M1 := {op(M)}: has(M1, i) $ i = 1..1000 end_proc:In
this case, execution time is even shorter than for the code that implements
the bisectional method:
time(g()) 1508.094

Calls to External Processes
Results returned by the time function exclude the time spent on calls to
external programs. If your code uses external programs, you can measure
the total time spent by that code, including calls to external processes. To
measure the total time, use the rtime function instead of time. For example,
the function call rtime() returns the elapsed time of the current MuPAD
session. This time includes idle time of the current session:
t := rtime(): print(Unquoted, "This session runtime is
".stringlib::formatTime(t))This session runtime is 5 minutes,
25.579 secondsWhen measuring code performance using rtime, avoid running
other processes in the background. Also ensure that enough memory is
available. The rtime function counts the total time, including idle time during
which some other process uses the CPU or your computer swaps data between
different types of memory.

4-41

4 Programming Fundamentals

Profile Your Code
Profiling is a way to measure where a program spends time. MuPAD provides
the prog::profile function to help you identify performance bottlenecks in
your code. Use this function to analyze performance of complicated nested
procedure calls. For simpler code snippets, measuring execution times is more
convenient and can give you enough information to identify performance
bottlenecks.

The prog::profile function evaluates the code that you want to profile, and
returns the profiling report. The report contains:

• A table showing the time your code spent on each function (total and
averaged per one call), number of calls to that function, children of that
function, and so on. Information for the most heavily used functions
appear on the top of the table. The first row in this table represents the
total execution time.

• A dependence graph showing a function itself, the functions it calls
(children), and the functions that call this function. The graph also shows
the timing and number of calls for each function.

Note Note By default, prog::profile does not measure performance of single
calls to kernel functions.

However, when prog::profile measures the performance of library functions, it
also prints the accumulated time the system spends in kernel functions. To
measure the performance of a single call to a kernel function, use prog::trace
to trace that kernel function.

Suppose you want to write a procedure that checks whether each integer
from 1 to 1000 appears in a 1000 1000 matrix of random integers. The direct
approach is to write a procedure that checks every element of a matrix
proceeding row by row and column by column:
f := proc(M, n, x) begin for j from 1 to n do for k from 1 to n do if M[j, k] = x
then return(TRUE) end_if end_for end_for; return(FALSE) end_proc:Use the
linalg::randomMatrix to create a 1000 1000 matrix of random integers:

4-42

Profile Your Code

matrixSize := 1000: M := linalg::randomMatrix(matrixSize, matrixSize,
Dom::Integer):Then call the procedure f 1000 times to check if each number
from 1 to 1000 appears in that matrix:
g := proc() begin f(M, matrixSize, i) $ i = 1..1000 end_proc:Measuring the time
needed to run the procedure g shows that the procedure requires optimization.
Although the performance bottleneck in this procedure is obvious, it is
not always easy to identify performance bottlenecks in more complicated
procedures. The time function does not indicate where the procedure spends
most of its execution time:
time(g()) 62023.876 To obtain the complete profiling report that shows timings
for all inner function calls, use prog::profile:
prog::profile(g()): percent usage of all | time self per single call | |
time self | | | time children per single call | | | | time children |
| | | | calls/normal exit | | | | | | calls/remember exit
| | | | | | | calls/errors | | | | | | | | [index] function
name--
100.0 109982.9 109982.9 . . 1 . . [0] procedure entry point
--
45.9 . 50467.2 . 27149.6 3019825 . . [1]
(Dom::Matrix(Dom::Integer))::_index_intern 19.7 . 21689.3 . 5460.3
3019825 . . [2] Dom::Integer::coerce 16.7 . 18373.1 . 77616.9
3019825 . . [3] (Dom::Matrix(Dom::Integer))::_index 12.7
14.0 13984.8 96.0 95990.0 1000 . . [4] f 5.0 . 5460.3 . . 3019825 . .
[5] Dom::Integer::convert . 8.0 8.0 109974.9 109974.9 1 . . [6] g
--
index %time self children called [index]
name--- [0]
100.0 109982.8 0 1 procedure entry point 8.0 109974.8 1 [6]
g---
50467.24 27149.65 3019825 [3] (Dom::Matrix(Dom::Integer))::_index
[1] 45.9 50467.24 27149.65 3019825
(Dom::Matrix(Dom::Integer))::_index_intern 21689.30 5460.346 3019825 [2]
Dom::Integer::coerce---
21689.30 5460.346 3019825 [1] (Dom::Matrix(Dom::Integer))::_index_intern
[2] 19.7 21689.30 5460.346 3019825
Dom::Integer::coerce 5460.346 0 3019825 [5]
Dom::Integer::convert---
18373.13 77616.89 3019825 [4] f [3] 16.7 18373.13 77616.89 3019825
(Dom::Matrix(Dom::Integer))::_index 50467.24 27149.65 3019825 [1]
(Dom::Matrix(Dom::Integer))::_index_intern--

4-43

4 Programming Fundamentals

13984.84 95990.02 1000 [6] g [4] 12.7 13984.84
95990.02 1000 f 18373.13 77616.89 3019825 [3]
(Dom::Matrix(Dom::Integer))::_index--
5460.346 0 3019825 [2] Dom::Integer::coerce [5] 5.0 5460.346 0 3019825
Dom::Integer::convert---
[6] 0.0 8.0 109974.8 1 g 13984.84 95990.02 1000 [4]
f--- Time
sum: 109982.873 msTop rows of the profiling report indicate that the
procedure spends most of its time accessing each matrix element. To improve
performance, rewrite the procedure so that it can access fewer elements
of a matrix in each call to the procedure f. For example, use the
algorithm based on the bisection method:
f := proc(M, n, x) begin if (M[1] - x)*(M[n] - x) > 0 then return(FALSE) elif
(M[1] - x)*(M[n] - x) = 0 then return(TRUE); else a := 1: b := n: while (b - a > 1)
do if is(b - a, Type::Odd) then c := a + (b - a + 1)/2 else c := a + (b - a)/2 end_if; if
M[c] - x = 0 then return(TRUE) elif (M[a] - x)*(M[c] - x) < 0 then b := c: else a
:= c: end_if; end_while; end_if; return(FALSE) end_proc:Before calling the
procedure f, you must convert the matrix M to a list and sort that list. Sorting
the list that contains 104 entries is an expensive operation. Depending on the
number of calls to the procedure f, this operation can potentially eliminate
the increase in performance that you gain by improving the procedure f itself:
g := proc() local M1; begin M1 := sort([op(M)]): f(M1, matrixSize^2, i) $ i
= 1..1000 end_proc:For these particular matrix size and number of calls to
f, implementing the bisectional algorithm is still efficient despite the time
required to sort the list:
time(g()) 3840.24 The profiling report shows that the procedure spends
most of the time executing the op and g function calls. This is because
implementation of the bisection algorithm added new expensive operations
in g (conversion of a matrix to a list and then sorting the list). The profiling
report generated for the procedure call g() is very long. This example shows
only the top of the report:
prog::profile(g()): percent usage of all | time self per single call
| | time self | | | time children per single call | | | | time
children | | | | | calls/normal exit | | | | | | calls/remember
exit | | | | | | | calls/errors | | | | | | | | [index] function
name---
100.0 3884.2 3884.2 . . 1 . . [0] procedure entry point
--- 56.1
2180.1 2180.1 1704.1 1704.1 1 . . [1] g 33.0 1280.1 1280.1 188.0 188.0 1 . .
[2] (Dom::Matrix(Dom::Integer))::op 6.1 0.2 236.0 . . 1000 . . [3] f 3.2 0.1

4-44

Profile Your Code

124.0 . . 1000 . . [4] ‘p -> [coeff(p, All)][2..-1]‘ 1.5 0.1 60.0 . . 1000 . . [5]
‘l -> l.[Rzero $ r - nops(l)]‘ 0.1 2.0 4.0 . . 2 . . [6] Dom::Integer::hasProp
. 2 . . [7] DomainConstructor::hasProp 9981 . [8] is
--- The
recommended approach for improving performance of your code is to use
the MuPAD functions when possible. For example, MuPAD provides the
has function for checking whether one MuPAD object contains another
MuPAD object. Rewrite your code using the has function and combining the
procedures f and g:
g := proc() local M1; begin M1 := {op(M)}: has(M1, i) $ i = 1..1000 end_proc:This
procedure also converts the matrix M to a set. Converting a matrix to a set can
reduce the number of elements. (MuPAD removes duplicate elements of a set.)

The execution time for the procedure call g() is the shortest among the three
implementations:
time(g()) 1520.095 The profiling report shows that the procedure spends most
of its execution time accessing the 1000 1000 matrix of random integers and
converting it to a set. This example shows only the top of the profiling report:
prog::profile(g()): percent usage of all | time self per single call
| | time self | | | time children per single call | | | | time
children | | | | | calls/normal exit | | | | | | calls/remember
exit | | | | | | | calls/errors | | | | | | | | [index] function
name--
100.0 1556.1 1556.1 . . 1 . . [0] procedure entry point
-- 78.9
1228.1 1228.1 188.0 188.0 1 . . [1] (Dom::Matrix(Dom::Integer))::op 9.0 140.0
140.0 1416.1 1416.1 1 . . [2] g 8.2 0.1 128.0 . . 1000 . . [3] ‘p -> [coeff(p,
All)][2..-1]‘ 3.9 0.1 60.0 . . 1000 . . [4] ‘l -> l.[Rzero $ r - nops(l)]‘ 2 .
. [5] Dom::Integer::hasProp 2 . . [6] DomainConstructor::hasProp
--

4-45

4 Programming Fundamentals

Techniques for Improving Performance
For most symbolic and numeric computation tasks, MuPAD implements
the fastest and most reliable currently known algorithms. Among these
algorithms, the system always tries to find the best algorithm for your
particular computation task. Often, the system also allows you to choose an
algorithm explicitly or implicitly. For example, you can create a sequence by
using the sequence generator $ or the for loop. Also, you can choose particular
solvers, and simplification functions. Such choices can affect the performance
of computations.

These techniques can accelerate your computations in MuPAD:

• Use built-in MuPAD data types and functions when possible. Typically,
these functions are optimized to handle your computation tasks faster
and smoother.

• Set assumptions on parameters when possible. Use the assumptions of
variables sparingly or avoid them completely. For details about how
assumptions affect performance, see When to Use Assumptions.

• Call special solvers directly instead of using general solvers. If you can
determine the type of an equation or system that you want to solve, calling
the special solver for that equation or system type is more efficient. See
Choosing a Solver.

• Call numeric solvers directly if you know that a particular problem cannot
be solved symbolically. This technique has a significant disadvantage: for
nonpolynomial equations numeric solvers return only the first solution
that they find.

• Try using options. Many MuPAD functions accept options that let the
system reduce computation efforts. For information about the options of
a particular MuPAD function, see the “Options” section of the function
help page.

• Limit complexity of the expressions that you use.

• Use shorter data structures when possible. For example, converting a
sequence with 106 entries to a list takes longer than converting 1000
sequences with 1000 entries each.

4-46

Techniques for Improving Performance

• Avoid creating large symbolic matrices and dense matrices when possible.
For details about improving performance when working with matrices, see
Using Sparse and Dense Matrices.

• Avoid using for loops to create a sequence, a flat list, a string and similar
data structures by appending new entries. Instead, use the sequence
generator $.

• Use for loops as outer loops when creating deep nested structures. Use the
sequence generator $ for inner loops.

• Use the remember mechanism if you call a procedure with the same
arguments more than once. The remember mechanism lets you avoid
unnecessary reevaluations. See Remember Mechanism. At the same time,
avoid using the remember mechanism for nonrecurring procedure calls,
especially if the arguments are numerical.

• Avoid storing lots of data in the history table. If you suspect that the
history table uses a significant amount of memory, clear the history table
or reset the engine. For information about the history table, see History
Mechanism.

• Avoid running large background processes, including additional MuPAD
sessions, at the same time as you execute code in MuPAD.

4-47

4 Programming Fundamentals

Display Memory Usage

In this section...

“Use the Status Bar” on page 4-48

“Generate Memory Usage Reports Periodically” on page 4-49

“Generate Memory Usage Reports for Procedure Calls” on page 4-50

Use the Status Bar
The amount of memory available on your computer can greatly affect your
symbolic computations. First, some computations cannot run without enough
memory. In this case, you get the “out of memory” error. Second, if the
MuPAD engine uses virtual memory by swapping data on and off the storage
device, computations can run much slower than they run if the system does
not use virtual memory. Observing memory usage when executing your code
can help you understand whether your code uses available memory efficiently.

The simplest tool for observing the memory usage is the status bar. You can
find the status bar at the bottom of a MuPAD notebook. If you do not see
the status bar, select View > Status Bar. The far left end of the status bar
displays the current engine state, including memory and time used during the
most recent computations. While a computation is still running, the status
bar information keeps changing.

If the engine is not connected to your notebook, the status bar displays Not
Connected. For more information about the status bar, see Viewing Status
Information.

Note Note When you perform computations in several MuPAD notebooks,
each notebook starts its own engine. In this case, watch for the total amount
of memory used by all MuPAD engines (the mupkern.exe processes).

4-48

Display Memory Usage

Generate Memory Usage Reports Periodically
When a computation takes a long time to run, it can be helpful to display
progress information. In this case, MuPAD can issue periodic messages
showing active memory usage, reserved memory, and evaluation time. You
can control the frequency with which MuPAD prints such messages.

To set the frequency of these periodic messages, use the Pref::report function.
By default, the value of Pref::report is 0; MuPAD does not print periodic status
messages. If you increase the value to 1, MuPAD prints status messages
approximately every hour. (The exact frequency depends on your machine.)
The maximum value accepted by Pref::report is 9.

Suppose you want to generate and sort the list of 10,000,000 random integer
numbers. These operations take a long time because of the huge number of
elements. If you set the value of Pref::report to 4, MuPAD displays a few
status messages while executing these operations:
Pref::report(4):sort([random() $ i = 1..10^7]): [used=167852k,
reserved=168579k, seconds=30] [used=294614k, reserved=295370k,
seconds=60] [used=421376k, reserved=422161k, seconds=90] If you increase
the value of Pref::report to 6, MuPAD prints the status messages more
frequently:
Pref::report(6):sort([random() $ i = 1..10^7]): [used=84035k, reserved=84661k,
seconds=10] [used=126987k, reserved=127664k, seconds=21] [used=169940k,
reserved=170600k, seconds=32] [used=212892k, reserved=213537k,
seconds=43] [used=255844k, reserved=256540k, seconds=54] [used=298797k,
reserved=299476k, seconds=65] [used=341749k, reserved=342413k,
seconds=76] [used=384701k, reserved=385416k, seconds=87] [used=427654k,
reserved=428352k, seconds=98] [used=470606k, reserved=471355k,
seconds=109] Every time you execute this example, MuPAD adds a new list of
107 random numbers and stores that list in the history table. By default, the
history table contains up to 20 elements. While this list remains in the history
table, MuPAD cannot release the memory needed to store 107 integers. To
release this memory, use one of these alternatives:

• Continue computations waiting until MuPAD writes 20 new elements to
the history table. Performing computations with a reduced amount of
available memory can be very slow.

4-49

4 Programming Fundamentals

• Terminate the MuPAD engine connected to the notebook by selecting
Notebook > Disconnect. The new engine starts when you evaluate any
command in the notebook.

• Clear the history table by setting the value of variable HISTORY to 0. This
variable specifies the maximum number of elements in the history table.
To restore the default value of HISTORY, enter delete HISTORY:

HISTORY := 0: delete HISTORY: HISTORY20

For more information about the history mechanism in MuPAD, see History
Mechanism.

For further computations, also restore the default value of Pref::report:
Pref::report(NIL):

Generate Memory Usage Reports for Procedure Calls
MuPAD can print memory usage information when you execute a procedure
in the tracing mode. In this case, the system reports memory usage on each
step of a procedure call.

For example, create the recursive procedure juggler that computes the
Juggler number sequence for any initial positive integer n:
juggler := proc(n:Type::PosInt) begin J := append(J, n); if n = 1 then
return(J) end_if: if testtype(n, Type::Even) then juggler(floor(n^(1/2))) else
juggler(floor(n^(3/2))) end_if end_proc:Suppose you want to see the memory
usage report for every call to this procedure. First call the prog::trace function
with the Mem option. Then switch execution of the juggler procedure to the
tracing mode:
prog::trace(Mem): prog::trace(juggler)Now when you call the juggler
procedure, the tracing report shows the memory usage for each call to
juggler:
J := []: juggler(7)enter juggler(7) [mem: 5338408] enter juggler(18) [mem:
5373600] enter juggler(4) [mem: 5374080] enter juggler(2) [mem: 5374584]
enter juggler(1) [mem: 5375064] computed [7, 18, 4, 2, 1] [mem: 5375032]
computed [7, 18, 4, 2, 1] [mem: 5374648] computed [7, 18, 4, 2, 1] [mem:

4-50

Display Memory Usage

5374264] computed [7, 18, 4, 2, 1] [mem: 5373880] computed [7, 18, 4, 2, 1]
[mem: 5373524] [7, 18, 4, 2, 1]

The Mem option is independent of the traced procedure. Now if you use
prog::trace to trace any other procedure, prog::trace displays memory usage
in every step of that procedure. Remove this global option for further
computations:
prog::trace(Mem = FALSE)To stop tracing the juggler procedure, use the
prog::untrace function:
prog::untrace(juggler):

4-51

4 Programming Fundamentals

Remember Mechanism

In this section...

“Why Use the Remember Mechanism” on page 4-52

“Remember Results Without Context” on page 4-53

“Remember Results and Context” on page 4-54

“Clear Remember Tables” on page 4-55

“Potential Problems Related to the Remember Mechanism” on page 4-57

Why Use the Remember Mechanism
If your code calls a procedure with the same arguments more than once,
avoid unnecessary reevaluations, and thus, improve performance. Instead of
multiple evaluations of a procedure call with the same arguments, MuPAD
can store the results of the first procedure call in a special table. This table is
called the remember table. The system stores the arguments of a procedure
call as indices of the remember table entries, and the corresponding results as
values of these entries. When you call a procedure using the same arguments
as in previous calls, MuPAD accesses the remember table of that procedure. If
the remember table contains the entry with the required arguments, MuPAD
returns the value of that entry. Otherwise, MuPAD evaluates the procedure
call, and writes the arguments and corresponding results to the remember
table of the procedure.

Using the remember mechanism in MuPAD can significantly accelerate
your computations, especially when you use recursive procedure calls. For
example, create the procedure that computes the Lucas numbers. The Lucas
numbers are a sequence of integers. The recursion formula that defines the
nth Lucas number is similar to the definition of the Fibonacci numbers:
L[0]=1, L[1]=3, _outputSequence(L[(n+2)]=L[n]+L[(n+1)], ‘.‘)

The following recursive procedure returns any Lucas number:

4-52

Remember Mechanism

lucas:= proc(n:Type::PosInt) begin if n = 1 then 1 elif n = 2 then 3 else
lucas(n - 1) + lucas(n - 2) end_if end_proc:However, if the value n is large,
computing the nth Lucas number can be very slow. The number of required
procedure calls is exponential. Often, the procedure calls itself with the same
arguments, and it reevaluates the result in every call:
time(lucas(35))66156.25

Using the remember mechanism eliminates these reevaluations. To enable
the remember mechanism for a particular procedure, use the prog::remember
function. This function returns a modified copy of a procedure that stores
results of previous calls in the remember table:
lucas := prog::remember(lucas):When you call this procedure, MuPAD
accesses the remember table. If the system finds the required entry in the
remember table, it returns remembered results immediately. Now, MuPAD
computes the 35th and even the 100th Lucas number almost instantly:
time(lucas(35)), time(lucas(100))0.0, 0.0

Alternatively, you can enable the remember mechanism for a particular
procedure by using the option remember for that procedure. For example, use
the option remember to enable the remember mechanism for the procedure
lucas:
lucas:= proc(n:Type::PosInt) option remember; begin if n = 1 then 1 elif
n = 2 then 3 else lucas(n - 1) + lucas(n - 2) end_if end_proc:For further
computations, delete the procedure lucas:
delete lucas:

Remember Results Without Context
By default, the remember mechanism does not consider context information
of a procedure call. Thus, the remember mechanism disregards any changes
in assumptions set on the arguments of a procedure call and the number of
digits used for floating-point arithmetic. By default, remember tables contain
only arguments and results of procedure calls. They do not store context

4-53

4 Programming Fundamentals

information. For example, create the function f that computes the reciprocal
of a number. Use prog::remember to enable the remember mechanism for
this function:
f := (x)-> 1.0/x: f := prog::remember(f):The default number of significant digits
for floating-point numbers is 10. Use the function f to compute the reciprocal
of 3. The system displays the result with the 10-digits accuracy:
f(3)0.3333333333

Now increase the number of digits to 50. Then call the function f with the
argument 3 again. By default, MuPAD does not realize that you increased
the required accuracy. The system accesses the remember table, finds the
entry that corresponds to the argument 3, and returns the result previously
computed for that argument. Since MuPAD must display the output with 50
digits, the last digits in the displayed result are incorrect:
DIGITS := 50:
f(3)0.33333333333333333304421275400386548426467925310135

For further computations, restore the default value of DIGITS and delete f:
delete DIGITS, f

Remember Results and Context
Although by default the remember mechanism in MuPAD disregards all
context information, you can extend the prog::remember function call and
take into account the properties of arguments and current accuracy of
floating-point arithmetic. For example, create the function f that computes
the reciprocal of a number. Use prog::remember to enable the remember
mechanism for this function. In the prog::remember function call, specify the
dependency function. The dependency function is the function that computes
the current properties of the input arguments and the values of DIGITS and
ORDER. Then prog::remember compares this context information with the
context information used to compute the remembered values. If the context
information is the same, prog::remember returns the remembered result.

4-54

Remember Mechanism

Otherwise MuPAD evaluates the current procedure call, and adds the new
result to the remember table.

Note The option remember does not let you specify the dependency function.
If results of a procedure depend on the context information, use the
prog::remember function for that procedure.

In this example, the dependency function is a list that checks both the
properties of input arguments and the value of DIGITS:
f := (x)-> 1.0/x: f := prog::remember(f, () -> [property::depends(args()),
DIGITS]):The default number of significant digits for floating-point numbers
is 10. Use the function f to compute the reciprocal of 3. The system displays
the result with the 10-digits accuracy:
f(3)0.3333333333

If you set the number of digits to 50, and then call the function f with the
same argument 3, prog::remember realizes that the number of digits has
changed. Instead of returning the previous result stored in the remember
table, the system reevaluates the result and updates the remember table:
DIGITS := 50:
f(3)0.33

For further computations, restore the default value of DIGITS and delete f:
delete DIGITS, f

Clear Remember Tables
In some cases, the remember mechanism can lead to incorrect results. For
example, if a nested procedure uses the remember mechanism, and you
redefine the inner procedure, MuPAD does not recognize the changes and
does not reevaluate the procedure call.

4-55

4 Programming Fundamentals

Create the following procedure f as a wrapper for the MuPAD heaviside
function. Use prog::remember to enable the remember mechanism for the
procedure f:
f := proc(x) begin heaviside(x) end: f := prog::remember(f):Now compute the
Heaviside function for the values -10, 0, and 10. MuPAD uses the value
heaviside(0)=1/2:
f(-10), f(0), f(10)0, 1/2, 1

You can define a different value for heaviside(0). First, use the unprotect
function to be able to overwrite the value of heaviside. Then, assign the new
value to heaviside(0):
unprotect(heaviside): heaviside(0):= 0:Despite the new value heaviside(0) =
0, the wrapper procedure f returns the old value 1/2:
f(0)1/2

The result of the procedure call f(0) does not change because the system
does not reevaluate this result. It finds the result in the remember table
of the procedure f and returns that result. To display the content of the
remember table, call the wrapper procedure f with the Remember option as a
first argument and the Print option as a second argument. The value 106 in
the second column is the value of MAXEFFORT used during computations.
f(Remember, Print)table([f(10), 0] = [1, 1000000.0], [f(-10), 0] = [0, 1000000.0],
[f(0), 0] = [1/2, 1000000.0])

4-56

Remember Mechanism

To force reevaluation of the procedure calls of f, clear the remember table of
that procedure. To clear the remember table, call f with the Remember option
as a first argument and the Clear option as a second argument:
f(Remember, Clear):Now f returns the correct result:
f(0)0

If you use the option remember, you also can clear the remember table and
force reevaluation. For example, rewrite the procedure f as follows:
f := proc(x) option remember; begin heaviside(x) end: f(0)0

Now restore the heaviside function to its default definition:
heaviside(0):= 1/2:To clear a remember table created by the option remember,
use the forget function:
forget(f): f(0)1/2

Use the protect function with the ProtectLevelError option to prevent
further changes to heaviside. Also, delete the procedure f:
protect(heaviside, ProtectLevelError): delete f

Potential Problems Related to the Remember
Mechanism
The remember mechanism is a powerful tool for improving performance of
MuPAD procedures. Nevertheless, you can encounter some problems when
using this mechanism:

• Remember tables are efficient only if the access time of the remember
table is significantly less than the time needed to evaluate the result. If a

4-57

4 Programming Fundamentals

remember table is very large, evaluation can be computationally cheaper
than accessing the result stored in the remember table.

• Storing large remember tables requires a large amount of memory.
Especially, remember tables created with the option remember can grow
very large, and significantly reduce available memory. The number of
entries in remember tables created by prog::remember is limited. When the
number of entries in a remember table created by prog::remember reaches
the maximum number, the system removes a group of older entries.

• Using prog::remember or the option remember for nonrecurring procedure
calls can significantly decrease code performance. Avoid using the
remember mechanism for nonrecurring procedure calls, especially if the
arguments are numerical.

• If you change the properties of input arguments or modify the variables
DIGITS or ORDER, the remember mechanism ignores these changes by
default. See Remembering Results Without Context.

• In some cases you must clear the remember table of a procedure to
enforce reevaluation and avoid incorrect results. For example, clearing
the remember table can be necessary when a procedure changes global
variables or if global variables affect the results of a procedure. See
Clearing Remember Tables.

• Many predefined MuPAD functions have special values stored in their
remember tables. Therefore, clearing the remember tables of predefined
MuPAD functions is not recommended. Note that the forget function does
not error when you call it for a predefined MuPAD function.

4-58

History Mechanism

History Mechanism

In this section...

“Access the History Table” on page 4-59

“Specify Maximum Number of Entries” on page 4-62

“Clear the History Table” on page 4-63

Access the History Table
MuPAD implements the internal history mechanism. The history mechanism
lets you access a limited number of previously computed results, with or
without the commands that generated the results. The history mechanism
also helps you reduce the number of additional identifiers commonly used for
storing the results of intermediate computations. Instead of assigning results
of such computations to auxiliary identifiers, you can access the entries of the
history table and get the previously computed result.

To access the entries of the history table, use the last and history functions.
The last function returns previously computed results without the command
that generated the results. The history function returns the previously
computed results along with the commands that generated those results.

For the last function, MuPAD also provides the shortcut %. The function call
last(n) (or % n) returns the nth entry of the history table. The last function
counts the entries of the history table from the end of the table. Thus, when
you use the last function, the most recent result is the first entry of the
history table.

For example, compute the factorials of the numbers 10, 20, and 30:
10!; 20!; 30!;3628800

2432902008176640000

4-59

4 Programming Fundamentals

265252859812191058636308480000000

To access the computed factorial of 30, use the function call last(3) or the
shorter call %3:
last(3)3628800

Note Note When you call the last or history function, MuPAD adds the
result of that call to the history table.

Calling the last function or its shortcut % inserts a new entry in the history
table. Thus, the history table now contains the results of the following
evaluations: 10!, 20!, 30!, and %3 (which in this example is equal to 10!). If
you call the last function with the argument 3 again, the system displays
the result of evaluation of 20!:
last(3)2432902008176640000

To access the most recent entry of the history table, you can use the shortcut
% without parameters. For example, solve the following equation, and then
simplify the result. Note that using % lets you avoid assigning the result
of a solution to an identifier:
solve(log(2, x) + log(2, 5) = x + 5, x);{-lambertW(0, -2^(5 - log(2,
5))*ln(2))/ln(2)}simplify(%){-lambertW(0, -(32*ln(2))/2^log(2, 5))/ln(2)}

4-60

History Mechanism

The last function does not evaluate results. The last function also returns the
results for which you used colons to suppress the outputs:
hold(2 + 2): %2 + 2

The history function displays both the result and the command that produced
that result. This function counts the entries of the history table from the
first result obtained in the current MuPAD session. Thus, when you use
the history function, the most recent result is the last entry of the history
table. In this section, the first entry of the history table is the computation
of the factorial of 10:
history(1) [10!, 3628800]

To find the current number of entries in the history table, call the history
function without an argument:
history()10

You can use the history function to access the most recent computation and
its result:
a := 2: history(history())[(a := 2), 2]

For the following statements, the history mechanism depends on whether you
call the statement interactively or within a procedure:

• for, repeat, and while loops

• if and case conditional statements

• procedure definitions

4-61

4 Programming Fundamentals

These statements are called compound statements. At the interactive level,
MuPAD stores compound statements as one unit. In procedures, MuPAD
stores the statements found within a compound statement in a separate
history table of the procedure. In this case, the system does not store the
compound statement itself.

Specify Maximum Number of Entries
By default, the history table for interactive computations can contain up to
20 entries. When the number of entries reaches 20, the system removes the
oldest entry from the history table every time it needs to add a new entry. For
interactive computations, the environment variable HISTORY determines the
maximum number of entries in the history table:
HISTORY20

To change the maximum number of entries in the history table for the current
MuPAD session, assign the new value to HISTORY:
HISTORY := 2:Now MuPAD stores only the two most recent commands and
their results in the history table:
a := 1: b := 2: c := 3: %1, %2; %33, 2

Error: The argument is invalid. [last]

Note Note Within a procedure, the maximum number of entries in the
local history table of the procedure is always 3, independent of the value
of HISTORY.

For further computations, restore the default maximum number entries in
the history table:
delete HISTORY: HISTORY20

4-62

History Mechanism

Clear the History Table
Although MuPAD restricts the number of entries in the history table, it does
not restrict its size. If a command returns a large result, the system stores
that result in the history table. While this result remains in the history
table, MuPAD cannot release the memory needed to store that result. One
or more large entries in the history table can significantly reduce available
memory and slow down further computations. If you know that a particular
command returns memory-consuming results, avoid writing that command
and its results to the history table. To avoid writing a command and its result
to the history table, set the value of HISTORY to 0. The disadvantage of this
approach is that you delete all previous results from the history table.

For example, set the value of HISTORY to 0 before creating a sequence of
1,000,000 random numbers:
HISTORY := 0: random() $ i = 1..10^6:For further computations, restore the
default maximum number entries in the history table:
delete HISTORY: HISTORY20

If the history table already contains a memory-consuming result, to release
the memory you also can clear the history table by setting the value of
HISTORY to 0. Alternatively, you can wait until the MuPAD fills the history
table with new entries. Also, you can select Notebook > Disconnect to
restart the MuPAD engine.

4-63

4 Programming Fundamentals

Why Test Your Code
After you debug and optimize your code, you might still need to test it.
Debugging lets you catch run-time errors that appear in your code. Testing
lets you catch bugs that appear when users provide unexpected combinations
of input arguments, or when they run your code on different platforms or
MuPAD versions. It also helps to catch bugs that can appear when you or
someone else edits your code later or when you need to integrate parts of
the program written by different developers. MuPAD provides tools for unit
testing your code. These tools let you write and execute your own test scripts
for a particular part of your code, for example, for a function or a procedure.

Suppose you create the procedure that accepts two numeric arguments, a and
b, compares them, and returns the larger number:
f := proc(a:Type::Numeric, b:Type::Numeric) begin if a = b or a > b then
return(a) else return(b) end_if end_proc:The type Type::Numeric includes
integers, rationals, floating-point numbers, and also complex numbers.
Therefore, any complex numbers are valid arguments of the procedure f. The
procedure f has a flaw in its design because you cannot compare two complex
numbers. If you call this procedure for two different complex numbers, the
procedure call results in an error. Nevertheless, the procedure works if you
call it for equal complex numbers:
f(I, I)I

Suppose you decide to keep the procedure f as it is. It works for equal complex
arguments. The error only occurs when the complex arguments are not equal.
Later, you or somebody else forgets about the issue with complex numbers,
but sees that the procedure can be improved as follows:
f := proc(a:Type::Numeric, b:Type::Numeric) begin if a >= b then return(a) else
return(b) end_if end_proc:This code looks shorter, and takes advantage of the
>= operator. However, if some users relied on the procedure f to recognize
equal complex numbers, their code breaks when they use the updated version:
f(I, I) Error: Cannot evaluate to Boolean. [_leequal] Evaluating: f If you do
not create and use a test script for the procedure f, you might never realize
that the procedure stopped working for the particular choices of arguments.
Even if you tested this choice of arguments before, you might forget to test

4-64

Why Test Your Code

it for the updated version. Writing a test script and running it every time
when you (or somebody else) update your code helps to avoid unexpected
loss in functionality.

4-65

4 Programming Fundamentals

Write Single Tests
The prog::test function is the basic testing tool in MuPAD. This function
compares the actual result of computations with the expected result that you
specify. For example, create the procedure f:
f := proc(a:Type::Numeric, b:Type::Numeric) begin if a = b or a > b then
return(a) else return(b) end_if end_proc:To test the procedure, use the
prog::test function. If the test does not reveal any problems, prog::test returns
the void object null() and does not print anything:
prog::test(f(I, I), I)If the procedure call tested by prog::test errors or if actual
results differ from expected results, prog::test prints information about the
test execution. For example, if your test compares two different complex
numbers, prog::test returns the following message:
prog::test(f(2*I, I), I)Error in test interactive 2Input: f(2*I, I)Expected: IGot:
TrapError = [1003, "Error: Cannot evaluate to Boolean. [_less]\ Evaluating:
f"]If the error is expected, you can rewrite the test using the TrapError option:
prog::test(f(2*I, I), TrapError = 1003)When you call prog::test, MuPAD
evaluates actual and expected results before comparing them:
prog::test(f(x^2 | x = 2, 5), 2*2)Error in test interactive 4Input: f(x^2 | x =
2, 5)Expected: 4Got: 5Evaluation of actual and expected results can take a
long time. To avoid long evaluations, the prog::test function lets you specify
the time limit for evaluation of the test. To limit the evaluation time for a
particular test, use the Timeout option of the prog::test function. For example,
set the time limit to 2 seconds:
prog::test(f([i! $ i = 1..1000000], [i! $ i = 1..1000000]), [i! $ i = 1..1000000],
Timeout = 2)Error in test interactive 5Input: f([i! $ i = 1..100000], [i! $ i =
1..100001])Expected: FAILGot: TrapError = [1320, "Error: Execution time
exceeded"]Timeout: 2.0 (5.106*prog::ntime())In this example, the time limit
measurement depends on your hardware configuration. The test report also
shows the hardware-independent time in terms of the prog::ntime function.

By default, prog::test tests the strict equality between actual and expected
results. Testing equality of floating-point values can be confusing when the
display precision differs from the internal precision. In this case, different
floating-point numbers can look identical. Thus, with the default values of
DIGITS and Pref::outputDigits, the floating-point approximation of 1/3 and
the number 0.3333333333 look identical:
prog::test(float(1/3), 0.3333333333)Error in test interactive 5Input:
float(1/3)Expected: 0.3333333333Got: 0.3333333333Internally, MuPAD uses
more than 10 digits to approximate 1/3 with the floating-point number.

4-66

Write Single Tests

The system adds guard digits for increased precision. To see how many
guard digits the system uses, increase the number of output digits using the
Pref::outputDigits function. Then, test the equality of the numbers again:
Pref::outputDigits(20): prog::test(float(1/3), 0.3333333333)Error
in test interactive 6Input: float(1/3)Expected: 0.3333333333Got:
0.33333333333333333304When you test equality of floating-point numbers, it
can be helpful to test the approximate equality. The approximate equality
operator in MuPAD is ~=. The corresponding function is _approx. The
prog::test function lets you choose the method for comparing actual and
expected results. For example, 1/3 is approximately equal to 0.3333333333
within the default 10-digits precision:
prog::test(float(1/3), 0.3333333333, Method= ‘~=‘)Also, using the Method
option lets you specify more than one acceptable solution. For example, if you
randomly pick one solution of the following equation, you can get any of its
four valid solutions:
i := random(1..4): prog::test(solve(x^4 - 16 = 0, x)[i()], {-2, 2, -2*I, 2*I},
Method= _in)For further computations, restore the default output precision:
Pref::outputDigits(UseDigits):

4-67

4 Programming Fundamentals

Write Test Scripts
If you write your code in collaboration with other developers or intend to
extend or update it later, you need to test your code more than once. Testing
a part of code every time when you or somebody else change it helps you
ensure that this part works properly. When you plan to test some part of code
repeatedly, it is helpful to write a test script and execute it every time when
you need to test the code. For example, create the following procedure f. This
procedure accepts two numeric arguments, a and b, compares them, and
returns the larger number:
f := proc(a:Type::Numeric, b:Type::Numeric) begin if a = b or a > b then
return(a) else return(b) end_if end_proc:Suppose you will likely update this
procedure in the future. To ensure that the procedure works as expected after
all possible updates, write the test script and execute it after any update. The
test script in MuPAD includes a set of single tests created by the prog::test
function. See Writing Single Tests for more information.

Each test script starts with the prog::testinit function and ends with the
prog::testexit function. To specify the name of the tested procedure, use
print(Unquoted, "testname") after prog::testinit. This name does not
affect the tested procedure itself. It only appears in the test reports generated
by your test script.

To test the procedure f for different choices of parameters, write the following
test script and save it to the test-f.tst file. The test does not find any
unexpected results or errors. After MuPAD executes the test script, it
generates the test report. The test script does not require any particular
file extension. You can use any file extension that you like. The test report
shows the number of executes tests, the number of errors encountered while
executing the test script, and the time and memory used to execute the test
script:
//test-f.tst prog::testinit("f"); print(Unquoted, "function f that compares two
numbers") prog::test(f(1, 1), 1): prog::test(f(1, 2), 2): prog::test(f(2, 1), 2):
prog::test(f(100, 0.01), 100): prog::test(f(0.01, 100), 100): prog::test(f(-10, 10),
10): prog::test(f(2*I, 2*I), 2*I): prog::test(f(2 + I, 2 + I), 2 + I): prog::test(error(f(2
+ I, 3 + I)), TrapError=1003): prog::test(error(f(x, y)), TrapError=1202):
prog::test(error(f(x, x)), TrapError=1202): prog::testexit(f)Info: 11 tests, 0
errors, runtime factor 0.0 (nothing expected)Info: CPU time: 12.7 sInfo:
Memory allocation 20452460 bytes [prog::testexit]If you change the original
procedure f, run the test script to catch any unexpected results:

4-68

Write Test Scripts

f := proc(a:Type::Numeric, b:Type::Numeric) begin if a >= b then return(a)
else return(b) end_if end_proc:You do not need to copy the test script to the
notebook. Instead, you can execute the test script that you saved to a file
without opening the file. To execute a test script:

1 Select Notebook > Read Commands to open the Read Commands dialog
box.

2 Change the file filter to show MuPAD test files or all files.

3 Navigate to the test file that contains the script and click OK.

Alternatively, use the READPATH variable to specify the path to the folder
that contains the file. Then use the read function to find and execute the
test file. For example, if you saved the test file test-f.tst in the folder
C:/MuPADfiles/TestScripts, use the following commands:
READPATH := "C:/MuPADfiles/TestScripts": read("test-f.tst")Error in test
function f that compares two numbers 7Input: f(2*I, 2*I)Expected: 2*IGot:
TrapError = [1003, "Error: Can’t evaluate to boolean [_leequal];\r\n
Evaluating: f"]Near line: 9Error in test function f that compares two numbers
8Input: f(2 + I, 2 + I)Expected: 2 + IGot: TrapError = [1003, "Error: Can’t
evaluate to boolean [_leequal];\r\n Evaluating: f"]Near line: 10Info: 11 tests,
2 errors, runtime factor 0.0 (nothing expected)Info: CPU time: 12.7 sInfo:
Memory allocation 20452460 bytes [prog::testexit]Although the change seems
reasonable and safe, the test report shows that the procedure does not work
for equal complex numbers anymore. Instead, the procedure throws an error.
If you do not test the code, you can miss this change in procedure behavior.
If this behavior is expected, correct the test script. Otherwise, correct the
procedure.

4-69

4 Programming Fundamentals

Code Verification
Even if your code executes without errors, and all your tests run without
failures, the code can still have some flaws. For example, it can:

• Modify global variables, protected identifiers, environment variables, and
formal parameters.

• Declare local variables or formal parameters and not use them afterwards.

• Contain undefined entries of domains or domain interfaces.

To ensure that your code does not introduce such flaws, use the prog::check
function to verify it. Use this function to check your procedures, domains, and
function environments. Suppose you wrote the following procedure:
f := proc(x, n) local a, b, c; begin a := m; b := a; if x > 0 then x := level(b, 2) else
x := -level(b, 2) end_if; end:When you call this procedure, it does not error:
f(42, 24)m

To check f for common programming flaws, use prog::check. When calling
prog::check, you can specify how detailed the report must be. This setting is
called the information level of the report. The second argument controls the
information level of the report generated by prog::check. Use options to see
specific flaws or call prog::check without options to see all common flaws that
MuPAD finds in the procedure. For the procedure f, prog::check with the
information level 3 reports these flaws:
prog::check(f, 3)Critical usage of ’level’ on local variable ’ Critical usage of
’level’ on local variable ’ Global idents: {m} in [f] Unused local variables: {c} in
[f] Function ’level’ applied to variables: {b} in [f] Warnings: 3 [f] For the list of
all available options, see the prog::check help page.

4-70

Protect Function and Option Names

Protect Function and Option Names
The names of the built-in MuPAD functions and options are protected. If you
try to assign a value to a MuPAD function or option, the system throws an
error. This approach ensures that you will not overwrite a built-in function
or option accidentally.

If you create a new MuPAD procedure, it is recommended to protect the
procedure and all its options, especially if you often use that procedure. For
example, MuPAD does not provide a function for computing Lucas numbers.
You can write your own procedure for computing Lucas numbers, and then
protect the procedure name.

The Lucas numbers are a sequence of integers. The recursion formula that
defines the nth Lucas number is similar to the definition of the Fibonacci
numbers:

L[0]=1, L[1]=3, _outputSequence(L[(n+2)]=L[n]+L[(n+1)], ‘.‘)

Create the following procedure that computes the nth Lucas number:
lucas:= proc(n:Type::PosInt) option remember; begin if n = 1 then 1 elif n = 2
then 3 else lucas(n - 1) + lucas(n - 2) end_if end_proc: lucas(i) $ i = 1..51, 3,
4, 7, 11

Now protect the procedure name, lucas, using protect with the
ProtectLevelError option:
protect(lucas, ProtectLevelError):ProtectLevelError lets you set full
protection for the identifier. Now, trying to assign any value to lucas results
in error:
lucas := 0 Error: The identifier ’lucas’ is protected. [_assign] Alternatively,
you can use the ProtectLevelWarning option. In this case, you can still
assign a value to the protected identifier, but a warning appears, for example:

4-71

4 Programming Fundamentals

protect(lucas, ProtectLevelWarning):You can assign any value to lucas now,
but such assignment triggers a warning:
lucas := 0 Warning: The protected variable ’lucas’ is overwritten. [_assign] 0

For further computations, remove protection from the identifier lucas:
unprotect(lucas):

4-72

Create and Extend Libraries

Create and Extend Libraries

In this section...

“Create New Libraries” on page 4-73

“Add New Functions to Libraries” on page 4-77

Create New Libraries
The MuPAD functions intended for solving each type of mathematical
problems are collected in libraries. For example, the numlib library contains
the functions that implement algorithms for solving number theory problems,
and the numeric library contains functions that implement numerical
algorithms. If you write your own functions for a particular task, you can
also collect them in a library.

Suppose you implemented functions for operating on integers. For example,
you wrote a factorial function and a new function for computing powers of
integers. Now you can organize these elementary number theoretic functions
in a library. Although a library name can contain uppercase letters, numbers,
and special symbols, most MuPAD library names consist of lowercase letters
only. The recommended practice is to use library names that your users would
remember easily. For example, call the new library domain for elementary
number theoretic functions numfuns.

If you have Symbolic Math Toolbox software, you can find three new number
theoretic functions in the MATLAB installation folder:

/MATLAB/R20xxx/toolbox/symbolic/mupad/packages/demoPack1

On Windows platforms, replace slashes with backslashes. These functions are
created as an example. By default, MuPAD does not provide these functions.
This folder has the following structure:

demoPack1/lib/init.mu
demoPack1/lib/LIBFILES/numfuns.mu
demoPack1/lib/NUMFUNS/factorial.mu
demoPack1/lib/NUMFUNS/gcd.mu
demoPack1/lib/NUMFUNS/russian.mu

4-73

4 Programming Fundamentals

If you do not have the lib folder, decompress the lib.tar file first. You can
find this file in the demoPack1 folder.

The initialization file, init.mu, is implemented as follows:

// init-file for demoPack1 containing the library numfuns

numfuns := loadproc(numfuns, pathname("LIBFILES"), "numfuns"):

// It's a good idea to protect your lib against accidental deletion
protect(numfuns, ProtectLevelError):

// return value of package call
null():

The pathname function creates the path name in a form suitable for your
operating system. The loadproc call refers to the actual definition of the new
library domain in LIBFILES/numfuns.mu which is implemented as follows:

// numfuns -- the library of elementary number theory

numfuns := newDomain("NumFuns"):

numfuns::Name := "numfuns":
numfuns::info := "Library 'numfuns': the library of elementary number theor

numfuns::interface := {hold(factorial),
hold(gcd),
hold(russianMult),
hold(russianPower)
}:

// defining the methods

// suggested name conventions for files: directories in CAPITALS,
// file names match the names of functions (including case) defined in them
// When following these conventions, you can use the simple autoload

4-74

Create and Extend Libraries

// command. E.g., numfuns::factorial is defined in NUMFUNS/factorial.mu:
autoload(numfuns::factorial):
autoload(numfuns::gcd):

// when your code is organised differently, you need to go more low-level:

alias(path = pathname("NUMFUNS")):

numfuns::odd :=
loadproc(numfuns::odd, path, "russian"):

numfuns::russianMultNNI :=
loadproc(numfuns::russianMultNNI, path, "russian"):

numfuns::russianMult :=
loadproc(numfuns::russianMult, path, "russian"):

numfuns::russianPower :=
loadproc(numfuns::russianPower, path, "russian"):

// not really required, but eases editing in more complex cases:
unalias(path):

// return value of reading this file, should always be null():
null():
// --------- end of file numfuns.mu ---------

numfuns.mu creates the new library domain using newDomain. Any MuPAD
library domain must have the Name and info slots. You also can define an
interface slot. This slot contains all functions that you want to expose to
your users. For example, the interface slot of the numfuns domain does not
include numfuns::odd and numfuns::russianMultNNI. These functions are
utility functions, and therefore, they must not be exposed to users.

numfuns.mu also contains references for loading the functions
numfuns::factorial, numfuns::gcd, numfuns::odd,
numfuns::russianMultNNI, numfuns::russianMult, and
numfuns::russianPower. You can find these functions in the following files
in the demoPack1/lib/NUMFUNS folder:

• factorial.mu contains numfuns::factorial.

• gcd.mu contains numfuns::gcd.

4-75

4 Programming Fundamentals

• russian.mu contains four functions: numfuns::odd,
numfuns::russianMultNNI, numfuns::russianMult, and
numfuns::russianPower.

When you have a folder that contains your functions, the initialization file,
and the file that creates a new library domains and its slots, you can load the
library. To load a library, specify the path to the library package, and then use
package. For example, load demoPack1 from the MATLAB installation folder:

/MATLAB/R20xxx/toolbox/symbolic/mupad/packages

(Replace this path with the actual path to demoPack1 on your system.) If the
variable PACKAGEPATH already contains the path to the library folder, you
can call package without specifying the path to the folder.

When package successfully loads a new library, it does not produce any output:
PACKAGEPATH := "/MATLAB/R20xxx/toolbox/symbolic/mupad/packages",
PACKAGEPATH: package("demoPack1")Use info to see information about
the new library:
info(numfuns) Library ’numfuns’: the library of elementary number theory
-- Interface: numfuns::factorial, numfuns::gcd, numfuns::russianMult,
numfuns::russianPower, After you load the library, it becomes fully integrated
into the system. You can call its functions as you would call any built-in
MuPAD function:
numfuns::factorial(41)33452526613163807108170062053440751665152000000000

numfuns::russianPower(123, 12)11991163848716906297072721

By default, you cannot reload the same library package:
package("demoPack1") Warning: Package already defined. For redefinition
use option Forced [package] To overwrite the existing library numfuns, call
package with the Forced option:
package("demoPack1", Forced) Warning: Package redefined [package]

4-76

Create and Extend Libraries

Add New Functions to Libraries
Instead of creating a new library domain, you can add new functions
to the existing library. For example, if you wrote the new functions
numlib::factorial, numlib::greatestCommonDivisor, and
numlib::russianPower, you can add them to the numlib library.

If you have Symbolic Math Toolbox software, you can find these three new
number theoretic functions in the MATLAB installation folder:

/MATLAB/R20xxx/toolbox/symbolic/mupad/packages/demoPack2

On Windows platforms, replace slashes with backslashes.

Before adding new functions to the library, make sure that they
do not overwrite any existing MuPAD functions. For example, call
numlib::factorial to test whether MuPAD already provides a function
with this name:
numlib::factorialFAIL

demoPack2 has the following structure:

demoPack2/lib/init.mu
demoPack2/lib/NUMLIB/factorial.mu
demoPack2/lib/NUMLIB/gcd.mu
demoPack2/lib/NUMLIB/russian.mu

If you do not have the lib folder, decompress the lib.tar file first. You can
find this file in the demoPack2 folder.

demoPack2 does not include lib/LIBFILES/numlib.mu that you use when
creating a new library. (See Creating New Libraries for details.) Trying to
use this file leads to a conflict with the corresponding file that defines the
standard MuPAD numlib library domain. Instead, declare the new functions
directly in the initialization file init.mu:

4-77

4 Programming Fundamentals

// init-file for demoPack2 containing additional
// methods for the library numlib

numlib::interface := numlib::interface union
{hold(factorial),
hold(greatestCommonDivisor),
hold(russianMult),
hold(russianPower)
}:

alias(path = pathname ("NUMLIB")):

numlib::factorial := loadproc(numlib::factorial, path, "factorial"):
numlib::greatestCommonDivisor := loadproc(numlib::greatestCommonDivisor,

path, "gcd"):
numlib::odd := loadproc(numlib::odd, path, "russian"):
numlib::russianMultNNI := loadproc(numlib::russianMultNNI, path, "russian")
numlib::russianMult := loadproc(numlib::russianMult, path, "russian"):
numlib::russianPower := loadproc(numlib::russianPower, path, "russian"):

unalias(path):

// return value of package method
null():

Any MuPAD library domain must have the Name and info slots. It
also can have an interface slot that contains all functions exposed to
users. The numlib library already has these slots. The initialization file
init.mu adds the following new functions to the interface slot of the
numlib domain: numlib::factorial, numlib::greatestCommonDivisor,
numlib::russianMult, and numlib::russianPower. It does not add
numlib::odd and numlib::russianMultNNI. These functions are utility
functions, and therefore, they must not be exposed to users.

init.mu also contains references for loading the functions numlib::factorial,
numlib::greatestCommonDivisor, numlib::odd, numlib::russianMultNNI,
numlib::russianMult, and numlib::russianPower. You can find these
functions in the following files in the demoPack2/lib/NUMLIB folder:

4-78

Create and Extend Libraries

• factorial.mu contains numlib::factorial.

• gcd.mu contains numlib::greatestCommonDivisor.

• russian.mu contains four functions: numlib::odd,
numlib::russianMultNNI, numlib::russianMult, and
numlib::russianPower.

When you have a folder that contains your functions and the initialization
file, you can add your functions to the existing library. To add new functions,
specify the path to the library package, and then use package. For example,
you can find demoPack2 in the MATLAB installation folder:

/MATLAB/R20xxx/toolbox/symbolic/mupad/packages

(Replace this path with the actual path to demoPack2 on your system.) If the
variable PACKAGEPATH already contains the path to the library folder, you
can call package without specifying the path to the folder.

When package successfully loads a new library, it does not produce any output:
PACKAGEPATH := "/MATLAB/R20xxx/toolbox/symbolic/mupad/packages",
PACKAGEPATH: package("demoPack2")To check that MuPAD added the
new functions to the numlib library, use info:
info(numlib)Library ’numlib’: the package for elementary
number theory -- Interface: numlib::Lambda, numlib::Omega,
numlib::checkPrimalityCertificate, numlib::contfrac, numlib::contfracPeriodic,
numlib::cornacchia, numlib::decimal, numlib::divisors, numlib::ecm,
numlib::factorGaussInt, numlib::factorial, numlib::fibonacci,
numlib::fromAscii, numlib::g_adic, numlib::greatestCommonDivisor,
numlib::ichrem, numlib::igcdmult, numlib::invphi, numlib::ispower,
numlib::isquadres, numlib::issqr, numlib::jacobi, numlib::lambda,
numlib::legendre, numlib::lincongruence, numlib::mersenne, numlib::moebius,
numlib::mpqs, numlib::mroots, numlib::msqrts, numlib::numdivisors,
numlib::numprimedivisors, numlib::omega, numlib::order, numlib::phi,
numlib::pi, numlib::pollard, numlib::primedivisors, numlib::primroot,
numlib::proveprime, numlib::reconstructRational, numlib::russianMult,
numlib::russianPower, numlib::sigma, numlib::sqrt2cfrac, numlib::sqrtmodp,
numlib::sumOfDigits, numlib::sumdivisors, numlib::tau, numlib::toAscii,
After you load the new functions, they become fully integrated into the system.
You can call these functions as you would call any built-in MuPAD function:
numlib::factorial(41)33452526613163807108170062053440751665152000000000

4-79

4 Programming Fundamentals

numlib::russianPower(123, 12)11991163848716906297072721

By default, you cannot reload the same package:
package("demoPack2") Warning: Package already defined. For redefinition
use option Forced [package] To overwrite an already loaded package, call
package with the Forced option:
package("demoPack2", Forced) Warning: Package redefined [package]

4-80

Data Collection

Data Collection

In this section...

“Parallel Collection” on page 4-81

“Fixed-Length Collection” on page 4-83

“Known-Maximum-Length Collection” on page 4-83

“Unknown-Maximum-Length Collection” on page 4-84

Parallel Collection
Suppose the data that you want to collect is generated element-by-element
and you know in advance how many elements will be generated. The intuitive
approach for collecting such data is to create an empty list and append each
new element to the end of the list. For example, this procedure uses this
approach to collect random integers generated by random:
col := proc(n) local L, i; begin L := []; for i from 1 to n do L := L.[random()];
end_for; end:The procedure generates random integers and collects them
in a list:
col(5)[427419669081, 321110693270, 343633073697, 474256143563,
558458718976]

To estimate the performance of this approach, use the procedure col to
generate a list of 50,000 random numbers:
time(col(50000))9828.063

The time function returns results measured in milliseconds.

Now, check how much time the procedure actually spends generating random
numbers:
time(random() $ i = 1..50000)312.02

4-81

4 Programming Fundamentals

Thus, the procedure spends most of the time appending the newly generated
numbers to a list. In MuPAD, appending a new entry to a list of n entries
takes time proportional to n. Therefore, run time of col(n) is proportional
to n2. You can visualize this dependency by plotting the times that col(n)
spends when creating lists of 1 to 50,000 entries:
plotfunc2d(n -> time(col(n)), n = 1..50000, Mesh = 20, AdaptiveMesh = 0)

When appending a new entry to a list, MuPAD allocates space for the new,
longer list. Then it copies all entries of the old list plus a new entry to this new
list. The faster approach is to create the entire list at once, without adding
each new entry separately. This approach is called parallel collection because
you create and collect data simultaneously. Use the sequence operator $
to implement this approach:
col := proc(n) local i; begin [random() $ i = 1..n]; end:This procedure spends
most of its time generating random numbers:
time(col(50000))312.03

4-82

Data Collection

Fixed-Length Collection
Suppose you know how many elements you will generate, but you cannot
generate them all at once. In this case, the best strategy is to create a list of
the required length filling it with some constant, such as 0 or NIL. Then
you can replace any entry of this list with the generated value. In this case,
you do not need to generate elements in the order in which you want them
to appear in the list.

For example, use this procedure to generate the list of the first n Lucas
numbers. The procedure creates a list of n entries, where each entry is 0.
Then it assigns the values to the first two entries. To replace all other entries
of the list with the Lucas numbers, the procedure uses the for loop:
lucas := proc(n) local L, i; begin L := [0 $ n]; L[1] := 1; L[2] := 3; for i from 3 to n
do L[i] := L[i-1] + L[i-2]; end_for; L end:Measure the time needed to create a
list of 10,000 Lucas numbers:
time(lucas(10000))62.4004

If you use the procedure that creates an empty list and appends each
generated Lucas number to this list, then creating a list of 10,000 Lucas
numbers takes much longer:
lucas := proc(n) local L, i; begin L := []; L :=L.[1]; L := L.[3]; for i from 3 to n do
L := L.[L[i-1] + L[i-2]]; end_for; L end:time(lucas(10000))421.2027

Known-Maximum-Length Collection
If you cannot predict the number of elements that you will generate, but have
a reasonable upper limit on this number, use this strategy:

4-83

4 Programming Fundamentals

1 Create a list with the number of entries equal to or greater than the upper
limit.

2 Generate the data and populate the list.

3 Discard the unused part of the list.

For example, use the following procedure to create a list. The entries of this
list are modular squares of a number a (a2 mod n). You cannot predict the
number of entries in the resulting list because it depends on the parameters
a and n. Nevertheless, you can see that in this case the number of entries
in the list cannot exceed n:
modPowers := proc(a, n) local L, i; begin L := [0 $ n]; L[1] := a; L[2] := a^2 mod
n; i := 2; while L[i] <> a do L[i + 1] := a*L[i] mod n; i := i + 1; end_while; L
:= L[1..i - 1]; end:When you call modPowers for a = 3 and a = 2, it creates
two lists of different lengths:
modPowers(3, 14); modPowers(2, 14)[3, 9, 13, 11, 5, 1]

[2, 4, 8]

Unknown-Maximum-Length Collection
Often, you cannot predict the number of elements and cannot estimate the
upper limit on this number before you start generating actual data. One
way of dealing with this problem is to choose some upper limit, and use
the strategy described in Known Maximum Length Collection. If that limit
is reached, then:

1 Choose a larger limit.

2 Create a new list with the number of elements corresponding to the new
limit.

3 Copy existing collected data to the new list.

4-84

Data Collection

Typically, increasing the list length by a constant factor results in better
performance than increasing it by a constant number of entries:
rndUntil42 := proc() local L, i; begin i := 1; L := [random()]; while L[i] mod
42 <> 0 do if i = nops(L) then L := L.L; end_if; i := i+1; L[i] := random();
end_while; L[1..i]; end:SEED := 123456789: rndUntil42()[900763287358,
105114186275, 873298641118, 648455050747, 234588728784, 92685732612,
986862526343, 604554099645, 670181021599, 362027535788, 418959155834,
993175789760, 149559951993, 321479945512, 428426485680, 895682234176,
447822957763, 41591770379, 80666499751, 874251833750, 992824008008,
119331599241, 55782166770, 716820986241, 814491390573, 864609020354,
219333389722, 422468038876, 665245836081, 381920617859, 300482942701,
159259847066, 589167468787, 999975884731, 405723681406, 785149905992,
770372676363, 739767410836, 909396123045, 713889761414, 242358421991,
526049482068, 209286390536, 38034535073, 730171970247, 627506313885,
915109441004, 131065916285, 948970540311, 807086241612]

SEED := 123456789: time(rndUntil42() $ i = 1..500)220.013

Alternatively, if you cannot predict the number of elements that you will need
to collect, then use a table that grows automatically (a hash table):
rndUntil42 := proc() local L, i, j; begin i := 1; L := table(1 = random()); while
L[i] mod 42 <> 0 do i := i+1; L[i] := random(); end_while; [L[j] $ j=1..i];
end:SEED := 123456789: time(rndUntil42() $ i = 1..500)216.014

4-85

4 Programming Fundamentals

For this example, using the table is slightly faster. If you change the value
42 to another value, using the list might be faster. In general, tables are
preferable when you collect large amounts of data. Choose the approach that
works best for solving your problem.

4-86

Visualize Expression Trees

Visualize Expression Trees
A useful model for visualizing a MuPAD expression is the expression tree. It
reflects the internal representation of an expression. The operators or their
corresponding functions are the vertices, and the arguments are sub-trees.
The lowest precedence operator is always at the root of an expression tree.

For example, you can represent the expression a + b * c + d * e
*sin(f)^g using this expression tree.

The following expression tree represents the expression int(exp(x^4),
x = 0..1).

4-87

4 Programming Fundamentals

MuPAD internally represents the difference a - b as a + b*(-1). Therefore,
MuPAD represents the difference using this expression tree.

Similarly, a quotient a/b has the internal representation a * b^(-1).

To display expression trees in a MuPAD notebook, use the prog::exprtree
function. It replaces operators with the names of the corresponding system
functions:
prog::exprtree(a + b * c + d * e *sin(f)^g): _plus | +-- a | +-- _mult | | | +-- b |
| | ‘-- c | ‘-- _mult | +-- d | +-- e | ‘-- _power | +-- sin | | | ‘-- f | ‘-- g

4-88

Modify Subexpressions

Modify Subexpressions

In this section...

“Find and Replace Subexpressions” on page 4-89

“Recursive Substitution” on page 4-92

Find and Replace Subexpressions
Operations on symbolic expressions often involve finding subexpressions and
replacing them with values or with other subexpressions. MuPAD provides
the following functions for this task:

• evalAt and its shortcut |

• subs

• subsex

• subsop

• prog::find

evalAt replaces specified objects in the expression tree with the specified
values or subexpressions, and then evaluates the expression. This function
replaces only entire branches of expression trees. It cannot replace a part of
the branch, for example, two terms in the sum of three terms:
a*(b + c) | b = d, a*(b + c) | b + c = d, a*(b + c + 1) | b + c = da*(c + d), a*d,
a*(b + c + 1)

evalAt replaces only free identifiers:
int(f(x), x = 0..1) + f(x) | x = 100f(100) + int(f(x), x = 0..1)

4-89

4 Programming Fundamentals

subs replaces specified objects in the expression tree with the specified values
or subexpressions. This function cannot replace a part of the branch in the
expression tree:
subs(a*(b + c), b + c = d), subs(a*(b + c + 1), b + c = d)a*d, a*(b + c + 1)

After substitution, subs does not evaluate the resulting expression (although
it can simplify the expression). You can enforce evaluation of the modified
subexpressions by using the EvalChanges option:
subs(ln(x), x = E), subs(ln(x), x = E, EvalChanges)ln(exp(1)), 1

subs replaces both free and dependent identifiers. In some cases, replacing
dependent identifiers can cause invalid results:
subs(int(f(x), x = 0..1) + f(x), x = 100)f(100) + int(f(100), 100 = 0..1)

subsex analyzes associative system operators and can replace part of the
branch in the expression tree:
subsex(a*(b + c), b + c = d), subsex(a*(b + c + 1), b + c = d)a*d, a*(d + 1)

subsex does not evaluate the resulting expression:
subsex(ln(x + a + 1), x + a = E - 1)ln(exp(1))

4-90

Modify Subexpressions

Use eval to evaluate results returned by subsex:
eval(%)1

subsop replaces only entire branches in the expression tree of an expression,
the same way as subs. When using subsop, you must know the position
(index) of the branch inside the expression in internal order that might differ
from the output order used to represent the expression on screen. To find the
internal index of a particular subexpression, use the op function:
ex := sin(a*x + b) + cos(a*x + b): op(ex);cos(b + a*x), sin(b + a*x)

op(ex, 2);sin(b + a*x)

op(ex, [2, 1]);b + a*x

op(ex, [2, 1, 2]);a*x

op(ex, [2, 1, 2, 1])a

Now you can use subsop to replace the parameter a with some value. For
example, replace it with the value 3:
subsop(ex, [2, 1, 2, 1] = 3)sin(b + 3*x) + cos(b + a*x)

4-91

4 Programming Fundamentals

prog::find helps you find all occurrences of a specific value in the expression.
For example, find all sums in this expression:
ex := (x + 1)/(x^2 + 2*x - 2) - 1/x + 1/(x + 1): pos := [prog::find(ex, hold(_plus))];
map(pos, p -> op(ex, p)); map(pos, p -> op(ex, p[1..-2]))[[0], [1, 1, 0], [2, 1, 0], [2,
2, 1, 0]]

[_plus, _plus, _plus, _plus]

[1/(x + 1) + (x + 1)/(x^2 + 2*x - 2) - 1/x, x + 1, x + 1, x^2 + 2*x - 2]

Recursive Substitution
You also can find all subexpressions of a particular type (for example, all
Bessel functions or all branches not containing x), execute some code for these
subexressions and replace them with the return value of that code. For this
task, use the misc::maprec function.

Suppose you want to rewrite all terms that contain the sine and tangent
functions in terms of cosine functions. (In this example, do not use sin(x)2 =
1 - cos(x)2 and similar identities.) First, create the functions sin2cos and
tan2cos that rewrite expressions in terms of the cosine function. These
functions access the operands of the sine and tangent functions using op(ex):
sin2cos := ex -> cos(op(ex) - PI/2): tan2cos := ex -> cos(op(ex) -
PI/2)/cos(op(ex)):Now you can use these functions when replacing all
occurrences of sine and tangent functions in an expression. To replace
subexpressions of the original expression, use misc::maprec. The misc::maprec
function uses the syntax misc::maprec(expression, selector =
replacement), where:

4-92

Modify Subexpressions

• expression is the original expression (subexpressions of which you want
to replace).

• selector is the selection criterion (for example, a set of types of
subexpressions that you want to replace).

• replacement is the procedure that you want to use to replace
subexpressions of the original expression.

MuPAD applies misc::maprec recursively to all subexpressions of the original
expression. For example, in this call misc::maprec replaces all occurrences of
sin and tan, including the sine function in tan(sin(x)):
misc::maprec(sin(x) + tan(x^2) - tan(sin(x)), {"sin"} = sin2cos, {"tan"} =
tan2cos)cos(x - PI/2) + cos(x^2 - PI/2)/cos(x^2) - cos(cos(x - PI/2) - PI/2)/cos(cos(x
- PI/2))

Besides data types or types of expressions, such as "sin" or "tan", you
can use procedures to represent selection criteria in misc::maprec. In this
example, the selection criterion of misc::maprec is the procedure ex ->
bool(freeIndets(ex) = {}) that excludes free identifiers and selects
all constants of an expression. Using the procedure f as a replacement,
misc::maprec replaces all nonrational constants of an expression with new
identifiers:
f := proc(x) option remember; begin if testtype(x, Type::Rational) then x else
genident(); end_if; end: misc::maprec(a = 5*b + PI*sqrt(2)*c + PI, (ex ->
bool(freeIndets(ex) = {})) = f)a = X6 + 5*b + X6*X7*c

option remember in f ensures that constants appearing multiple times
always get the same identifier. Moreover, you can access the remember table
of the procedure f and select which substitutions you want to make:
select([op(op(f,5))], _not@bool)[PI = X6, sqrt(2) = X7]

4-93

4 Programming Fundamentals

4-94

Variables Inside Procedures

Variables Inside Procedures

In this section...

“Closures” on page 4-95

“Static Variables” on page 4-97

Closures
When you call a procedure, MuPAD allocates memory for the local variables,
marks them as uninitialized, and evaluates the body of the procedure. At the
end of a procedure call, MuPAD destroys local variables freeing the allocated
memory. Now suppose that the result of a procedure call refers to local
variables of that procedure. For example, the returned value of this procedure
refers to its local variable z:
f := proc(x, y) local z; begin z := x + y; return(z); end:In this case, the variable
z is replaced by its value at the end of the procedure call. Therefore, the
returned value of the procedure is the value of the variable z, not the variable
z itself:
f(1, 2)3

Use hold to suppress evaluation of the variable z. Now the procedure returns
an object of type DOM_VAR:
f := proc(x, y) local z; begin z := x + y; return(hold(z)); end: f(1, 2)DOM_VAR(0,
2)

Objects of type DOM_VAR represent local variables and can only be used
inside procedures. An object of type DOM_VAR returned as a result of a
procedure call is useless because it does not have any connection to the
procedure.

You can access local variables of a procedure if you either declare them in that
procedure or declare them in a lexically enclosing procedure. For example,

4-95

4 Programming Fundamentals

in the following code the procedure g can access and modify the variable x
of the enclosing procedure f:
f := proc(x) local g; begin g := proc() begin x := x+1; end: g(); end: f(2)3

Instead of returning the result of the procedure call g(), you can return g
itself. In this case, the returned value retains a link to the variable x of the
procedure call. For reasons of memory management, f must declare that it
will return something holding a reference to a local variable. To declare it,
use option escape:
f := proc(x) local g; option escape; begin g := proc() begin x := x+1; end: g; end:
h := f(2): i := f(17): h(); h(); i(); h()3

4

18

5

This programming construct is called a closure. It is supported in many
programming languages.

4-96

Variables Inside Procedures

Static Variables

Alternative to Static Variables in MuPAD
Many programming languages support the concept of static variables. Static
variables are local variables the values of which are not reset in each call to a
procedure. The value of a static variable is initialized during the first call to
a procedure. In each subsequent call, a procedure remembers the value of a
static variable from the previous call.

Although MuPAD does not let you declare a variable inside a procedure
as a static variable, you can still use the concept of static variables while
programming in MuPAD.

When defining a procedure with proc, you often assign the procedure to an
identifier. However, MuPAD lets you use anonymous procedures. Also, you
can define one procedure inside another procedure. Thus, you can implement
the alternative to a static variable in MuPAD as a nested procedure where:

1 The outer procedure has a local variable. The outer procedure can be
anonymous.

2 The inner procedure uses the local variable of the outer procedure. For the
inner procedure that variable is not local, and therefore it does not reset
its value in each call.

For example, this code implements cnt as a static variable in MuPAD:
proc() local cnt; option escape; begin cnt := 0; f := proc() begin cnt := cnt + 1;
end: end(): f(); f(); f()1

2

3

4-97

4 Programming Fundamentals

Shared Static Variables
The technique of creating static variables in MuPAD lets you create shared
static variables by creating several inner procedures. The inner procedures
use the same local variable of the outer procedure. For inner procedures that
variable is not local, and therefore it does not reset its value:
proc() local x, y; option escape; begin x := 0; y := 0; f := () -> (x := x + y; [x, y]); g
:= n -> (y := y + n; [x, y]); end_proc(): f(); g(2); f(); f()[0, 0]

[0, 2]

[2, 2]

[4, 2]

4-98

Utility Functions

Utility Functions

In this section...

“Utility Functions Inside Procedures” on page 4-99

“Utility Functions Outside Procedures” on page 4-99

“Utility Functions in Closures” on page 4-100

Utility Functions Inside Procedures
You can define utility functions inside a procedure. For example, define the
utility function, helper, inside the procedure f:
f := proc(arguments) local helper, ...; begin helper := proc(...) begin ... end: ...
code using helper(...) ... end:The helper function is not visible or accessible
outside f. Your users cannot see the helper function, and therefore, they do
not rely on a particular implementation of this procedure. You can change its
implementation without breaking their code. At the same time, helper can
access and modify arguments of f.

The major disadvantage of this approach is that your test files cannot access
helper directly. Since it is typically recommended to start testing at the
smallest possible building blocks, this is a real disadvantage. Nevertheless,
for many tasks the benefits of this approach prevail over this disadvantage,
especially if the utility function must be able to modify the arguments of
the calling function.

Utility Functions Outside Procedures
You can define utility functions outside a procedure. For example, define the
utility function, helper, in the function environment f:
f := funcenv(proc(arguments) local ...; begin ... code using f::helper(...) ... end):
f::helper := proc(...) begin ... end:This approach does not require you to define
the utility function in the function environment of the procedure that uses it.
Defining a utility function in the function environment only helps you clarify
to people reading your code that you intend to call f::helper primarily or
solely within f. If you later decide to use f::helper in another procedure,
you can move the utility function to a more generic utility library. Again, this
recommendation only helps you improve readability of your code.

4-99

4 Programming Fundamentals

Defining utility functions outside the procedure that uses them does not hide
utility functions. Therefore, this approach lets you:

• Test utility functions directly.

• Define a utility function and a function that uses it in different source files.

• Use the same utility function for different procedures.

Defining utility functions outside the procedure that uses them has the
following disadvantages:

• Your users can access utility functions. If they rely on a particular
implementation of the utility function, changing that implementation
might affect their code.

• The utility function cannot access local variables of the procedure that uses
that utility function. The workaround is to pass these local variables as
arguments to the utility function.

• The utility function does not have privileged access to the arguments of the
procedure that uses that utility function.

• Defining the utility function far from the code line where you call it reduces
readability of the code.

Be careful when defining utility functions in slots of a function environment
because MuPAD uses these slots for overloading. Do not define utility
functions with such names as f::print, f::diff, f::evaluate, or
f::simplify unless you want to use these utility functions for overloading.

Utility Functions in Closures
You can define a utility function and all procedures that use it inside one
procedure. In this case, you must also define the utility function as a local
variable of that outer procedure. The outer procedure can be anonymous. For
example, create the anonymous procedure that has a local variable helper
and includes the utility function helper and two other procedures, f and g,
that use the utility function:
proc() local helper; option escape; begin helper := proc(...) ... end: f :=
proc(arguments) local ...; begin ... code using helper(...) ... end: g :=

4-100

Utility Functions

proc(arguments) local ...; begin ... code using helper(...) ... end: end():For
details about such structures, see Closures and Static Variables.

If you define a utility function in a closure, that function is inaccessible to
any external code. Your users cannot see and, therefore, rely on a particular
implementation of that utility function. Changing it will not break their code.
At the same time, this approach lets you create more than one procedure that
can access the utility function. In the example, both f and g can access helper.

The disadvantage of this approach is that the helper function cannot access
the local variables of the procedures that use it. To overcome this limitation,
you can use the context function or shared static variables.

Note Note Using context or shared static variables to make local variables
of the calling procedure accessible for the utility function is not recommended.

Using context to overcome this limitation typically leads to unreadable and
difficult to maintain code. The problems with shared static variables resemble
the problems with global variables, especially for recursive calls. The helper
procedure can access and modify such variables, but all other procedures
inside the same outer procedure can access and modify them too.

4-101

4 Programming Fundamentals

Private Methods
Although MuPAD does not let you declare a method as private, you can create
private methods by using closures.

MuPAD uses a fundamentally simple object and name lookup model. Objects
are data that belong to a particular domain type, and domains have named
entries (called slots). If the value of a slot is a function, this entry is called
a method. Therefore, MuPAD lets you use the same techniques for hiding
method calls as you use for hiding utility functions. For details, see Utility
Functions in Closures.

This example creates the private method f of the domain d. This method is
not accessible from methods in inherited domains and from category methods:
domain d local f; inherits Dom::BaseDomain; g := proc() begin print("g"); f();
end; begin f := proc() begin print("f"); end; end:d::fFAIL

d::g()"g"

"f"

4-102

Calls by Reference and Calls by Value

Calls by Reference and Calls by Value

In this section...

“Calls by Value” on page 4-103

“Calls by Reference” on page 4-104

Calls by Value
When calling a procedure with some arguments, you expect the procedure to
assign these values for its local variables and perform some computations
with those variables. For example, this procedure divides any number that
you pass to it by 10:
f := x -> (x := x/10):In this example, x is a local variable of f. When you call
f with any value, the procedure assigns that value to the local variable x,
uses it to compute the result, and then destroys the local variable x freeing
allocated memory:
x := 10: f(x), x1, 10

Although the value of the local variable x changes to 1 inside the procedure
and then gets destroyed, the value of the global variable x remains the same.
Therefore, you can conclude that the procedure does not access the actual
memory block that contains the value of x.

When you call this procedure, MuPAD allocates a new memory block and
copies the value of x to that block. While the procedure executes, the system
associates the local variable x with this new memory block. At the end of the
procedure call, it frees this memory block. The memory block that contains
the value of the global variable x does not change.

The strategy of copying values of procedure arguments to new memory blocks
and referring to these blocks during the procedure calls is known as calling by
value. Most MuPAD functions use this strategy.

Since calling by value creates extra copies of data, it can be inefficient in terms
of memory management. Creating extra copies of large data sets, especially

4-103

4 Programming Fundamentals

when your procedure calls are recursive or nested can significantly reduce free
memory on your computer. In many programming languages, calling by value
always means copying data, even when a procedure does not change that data.

MuPAD uses lazy copying to avoid creating unnecessary copies of data. When
you call a procedure, MuPAD does not allocate new memory blocks right
away. Instead, it links local variables to memory blocks where the arguments
of the procedure are stored. The system always counts how many objects are
linked to the same memory block. When a procedure modifies the value of a
local variable, MuPAD checks if there are other objects linked to the same
memory block, and creates a copy only if necessary.

For example, when you call f(x), MuPAD points both global variable x
(DOM_IDENT) and local (DOM_VAR) variable x to the same memory block.
Only when the local variable x changes its value, MuPAD allocates a new
memory block for it.

Calls by Reference
Typically, when you call a MuPAD procedure with some arguments, the
system uses the calling-by-value approach and creates copies of the values of
these arguments. This approach prevents procedures from modifying objects
passed to a procedure as arguments. For some functions, such as assignment,
MuPAD uses the calling-by-reference approach. In a call by reference, the
system does not copy the values of arguments to new memory blocks. Instead,
it copies references (pointers) to these arguments.

Some programming languages let you specify which approach to use for each
particular function. MuPAD does not offer specific language constructs for
calling by reference. Nevertheless, you can still call by reference in MuPAD.

Note For experienced MuPAD users, objects with reference semantics can
behave unexpectedly. Be careful when exposing reference semantics to your
users because it can be confusing.

Suppose your task requires a function call to be able to change the values of its
arguments. The simple strategy is to return a modified copy of the arguments

4-104

Calls by Reference and Calls by Value

and overwrite the original object by using assignment. For example, replace
matrix A with its upper row echelon form:
A := linalg::hilbert(3)matrix([[1, 1/2, 1/3], [1/2, 1/3, 1/4], [1/3, 1/4, 1/5]])

A := linalg::gaussElim(A)matrix([[1, 1/2, 1/3], [0, 1/12, 1/12], [0, 0, 1/180]])

When working with large data sets and deep nested calls, this strategy
can cause memory problems. Check the profiling report to see if your
implementation has such problems. For details, see Profiling Your Code.

You also can achieve the calling-by-reference effect in MuPAD using:

• Lexical Scoping

• Closures in Objects

• Domains in Objects

• Context Switching

Lexical Scoping
Instead of passing data as arguments of a procedure, you can use a local
variable of the outer procedure to store the data. For the inner procedure, this
variable is not local. Therefore, the inner procedure can change the value of
that variable, and the variable is not destroyed after the inner procedure
is executed:

4-105

4 Programming Fundamentals

f := proc(x) local n, incr; begin n := 0; incr := () -> (n := n + 1); while x > n do
incr(); end_while; end_proc:This approach does not fit many programming
tasks, but it is recommended wherever you can apply it. It is the simplest and
most readable approach to get the calling-by-reference effect in MuPAD.

Closures in Objects
When working with domains, you also can use the approach of having the
actual data in a closure. For example, instead of storing the actual data in the
objects, you can store functions that access the data:
domain d local get, set; inherits Dom::BaseDomain; new := proc(x) option
escape; begin new(dom, () -> x, y -> (x := y)); end; incr := x -> set(x, get(x) +
1); print := x -> get(x); begin get := x -> extop(x, 1)(); set := (x, y) -> extop(x,
2)(y); end_domain: e := d(4)4

d::incr(e)5

e5

See Closures for more details.

Domains in Objects
You can implement the calling-by-reference approach in your code by
using domains as tables with reference effects. (Using domains as tables
is unrelated to object-oriented programming.) The following example
demonstrates this strategy:
reset()domain dd local get, set; inherits Dom::BaseDomain; new := proc(x)
local d; begin d := newDomain(genident()); d::number := x; new(dom, d);
end; get := (x, entry) -> slot(extop(x, 1), entry); set := (x, entry, value) ->
slot(extop(x, 1), entry, value); incr := x -> (dom::set(x, "number", dom::get(x,
"number") + 1); x); print := x -> dom::get(x, "number"); end_domain: e := dd(4)4

4-106

Calls by Reference and Calls by Value

dd::incr(e)5

e5

The primitives of the plot library use this strategy. For example, when you
execute the following code, the domain plot::Function2d overloads the slot
function:
f := plot::Function2d(sin(x), x=-PI..PI): f::Color := RGB::Green:

Context Switching
The context function and option hold also let you implement the calling be
reference effect in your procedures. option hold prevents the procedure
from evaluating its arguments before executing the code in the procedure
body. The context function lets you perform operations as if they occur in
the calling procedure.

For example, in this code option hold prevents the incr procedure from
evaluating its argument. Therefore, the system does not copy the value of x to
a new memory block:
incr := proc(x) option hold; begin context(hold(_assign)(x, x + 1)); end_proc:
operator("++", incr, Prefix, 500):While executing this procedure, the system
performs the assignment operation in the context of the procedure f (the
calling procedure for incr). Thus, incr changes the value of the argument,
n, with which it was called:
f := proc(x) local n; begin n := 0; while x > n do ++n; end_while; end_proc:If you
use the ++ operator on an unchangeable object, MuPAD throws an error. For
example, you cannot assign the value 2 to the value 1:
++1 Error: The left side is invalid. [_assign] This error message does not
mention incr because the error occurs in the assignment which is performed
in a different evaluation context. The incr procedure behaves essentially
like a dynamic macro.

4-107

4 Programming Fundamentals

Integrate Custom Functions into MuPAD
MuPAD provides a variety of tools for handling built-in mathematical
functions such as sin, cos, exp, and so on. These tools implement the
mathematical properties of these functions. Typical examples are the float
conversion routine, the diff differentiation function, or the expand function,
which you use to manipulate expressions:
float(sin(1)); diff(sin(x), x, x, x); expand(sin(x + 1))0.8414709848

-cos(x)

cos(1)*sin(x) + sin(1)*cos(x)

You can say that the mathematical knowledge about the built-in functions
is distributed over several system functions: float knows how to compute
numerical approximations of the sine function, diff knows the derivative of the
sine function, and expand knows the addition theorems of the trigonometric
functions.

When you implement your own function, you can integrate it into the MuPAD
system, making other functions aware how to work with this new function
correctly. If the new function consists only of built-in MuPAD functions, then
you do not need to take extra steps. All MuPAD functions interact correctly
with the new function:
f := x -> (x*sin(x)): diff(f(x), x)sin(x) + x*cos(x)

However, if you implement a function that is not composed of the standard
MuPAD objects (for example, a new special function), you must distribute the
knowledge about the mathematical meaning of the new function to standard

4-108

Integrate Custom Functions into MuPAD

MuPAD functions, such as diff, expand, float, and so on. This extra task is
necessary for integrating the new function with the rest of the system. For
example, you might want to differentiate an expression that contains both
the new function and some built-in functions, and such differentiation is only
possible via the MuPAD differentiation routine. Therefore, this routine must
know how to handle the new symbol.

MuPAD uses function environments (domain type DOM_FUNC_ENV) to
integrate functions into the system. A function environment stores special
function attributes (slots) in an internal table. Whenever an overloadable
system function, such as diff, expand, or float, encounters an object of type
DOM_FUNC_ENV, it searches the function environment for a corresponding
slot. If a system function finds the appropriate slot, it calls that slot and
returns the value produced by the slot. All built-in MuPAD functions are
implemented as function environments:
domtype(sin), domtype(exp)DOM_FUNC_ENV, DOM_FUNC_ENV

You can call a function environment as you would call any MuPAD function
or procedure:
sin(1.7), exp(1.0)0.9916648105, 2.718281828

Suppose you implement the complete elliptic integral functions of the
first and second kind, K(z) and E(z). These functions appear in different
contexts, such as calculating the perimeter of an ellipsis, the gravitational or
electrostatic potential of a uniform ring, and the probability that a random
walk in three dimensions ever goes through the origin. The elliptic integrals
have the following special values:

4-109

4 Programming Fundamentals

E(0) = K(0) = PI/2 , E(1) = 1, K(1/2) =

(8*PI^(3/2))/gamma(-1/4)^2 , K(1/2) =

(gamma(1/4)^2)/(4*sqrt(2*PI)) .

MuPAD provides the built-in functions ellipticE and ellipticK for computing
these elliptic integrals. However, you can implement your own functions for
the same task. For example, write the procedures ellipE and ellipK. These
procedures define the values of the elliptic integrals for special values of x. For
all other argument values, the values of elliptic integrals are unknown, and
the procedures return the symbolic expressions ellipE(x) and ellipK(x).
Use procname to return symbolic expressions:
ellipE := proc(x) begin if x = 0 then PI/2 elif x = 1 then 1 else procname(x)
end_if end_proc:ellipK := proc(x) begin if x = 0 then PI/2 elif x = 1/2 then
8*PI^(3/2)/gamma(-1/4)^2 elif x = -1 then gamma(1/4)^2/4/sqrt(2*PI) else
procname(x) end_if end_proc:ellipE and ellipK return special values
for particular arguments. For all other arguments, they return symbolic
expressions:
ellipE(0), ellipE(1/2), ellipK(12/17), ellipK(x^2 + 1)PI/2, ellipE(1/2),
ellipK(12/17), ellipK(x^2 + 1)

The first derivatives of these elliptic integrals are as follows:

E’(z) = (E(z) - K(z))/(2*z) , K’(z) = (E(z) - (1 - z)*K(z))/(2*(1

- z)*z) .

The standard MuPAD differentiation function diff does not know about these
rules. Therefore, trying to differentiate ellipE and ellipK simply returns
the symbolic notations of the derivatives:
diff(ellipE(x), x), diff(ellipK(x), x)diff(ellipE(x), x), diff(ellipK(x), x)

4-110

Integrate Custom Functions into MuPAD

To make diff work with the new functions, create function environments from
the procedures ellipE and ellipK. In addition, function environments let
you control the appearance of the symbolic function calls in outputs.

A function environment consists of three operands.

• The first operand is a procedure that computes the return value of a
function call.

• The second operand is a procedure for printing a symbolic function call on
the screen.

• The third operand is a table that specifies how the system functions handle
symbolic function calls.

To create function environments, use funcenv. For example, create function
environments ellipE and ellipK. Use the second argument to specify that
symbolic calls to ellipE and ellipK must appear as E and K outputs:
output_E := f -> hold(E)(op(f)): ellipE := funcenv(ellipE, output_E):output_K
:= f -> hold(K)(op(f)): ellipK := funcenv(ellipK, output_K):Although ellipE
and ellipK are now function environments, you can call them as you would
call any other MuPAD function:
ellipE(0), ellipE(1/2), ellipK(12/17), ellipK(x^2+1)PI/2, E(1/2), K(12/17), K(x^2
+ 1)

The third argument funcenv is a table of function attributes. It tells the
system functions (such as float, diff, expand, and so on) how to handle
symbolic calls of the form ellipE(x) and ellipK(x). You can update this
table specifying the rules for the new function. For example, specify the new
differentiation rules by assigning the appropriate procedures to the diff slot
of the function environments:
ellipE::diff := proc(f,x) local z; begin z := op(f); (ellipE(z) - ellipK(z))/(2*z) *
diff(z, x) end_proc:ellipK::diff := proc(f,x) local z; begin z := op(f); (ellipE(z)

4-111

4 Programming Fundamentals

- (1-z)*ellipK(z))/ (2*(1-z)*z) * diff(z, x) end_proc:Now, whenever f =
ellipE(z), and z depends on x, the call diff(f, x) uses the procedure
assigned to ellipE::diff:
diff(ellipE(z), z); diff(ellipE(y(x)), x); diff(ellipE(x*sin(x)), x)(E(z) - K(z))/(2*z)

((E(y(x)) - K(y(x)))*diff(y(x), x))/(2*y(x))

((E(x*sin(x)) - K(x*sin(x)))*(sin(x) + x*cos(x)))/(2*x*sin(x))

The new differentiation routine also finds higher-order derivatives:
diff(ellipE(x), x, x)((E(x) - K(x))/(2*x) + (E(x) + K(x)*(x - 1))/(2*x*(x - 1)))/(2*x)
- (E(x) - K(x))/(2*x^2)

Since the taylor function internally calls diff, the new differentiation routine
also lets you compute Taylor expansions of the elliptic integrals:
taylor(ellipK(x), x = 0, 6)PI/2 + (PI*x)/8 + (9*PI*x^2)/128 + (25*PI*x^3)/512 +
(1225*PI*x^4)/32768 + (3969*PI*x^5)/131072 + O(x^6)

4-112

Integrate Custom Functions into MuPAD

If a derivative of a function contains the function itself, the integration routine
has a good chance of finding symbolic integrals after you implement the diff
attributes. For example, int now computes the following integrals:
int(ellipE(x), x)(2*E(x))/3 - (2*K(x))/3 + x*((2*E(x))/3 + (2*K(x))/3)

int(ellipK(x), x)2*E(x) - 2*K(x) + 2*x*K(x)

4-113

4 Programming Fundamentals

4-114

5

Graphics and Animations

• “Gallery” on page 5-2

• “Easy Plotting: Graphs of Functions” on page 5-21

• “Advanced Plotting: Principles and First Examples” on page 5-70

• “The Full Picture: Graphical Trees” on page 5-82

• “Viewer, Browser, and Inspector: Interactive Manipulation” on page 5-86

• “Primitives” on page 5-92

• “Attributes” on page 5-98

• “Layout of Canvas and Scenes” on page 5-108

• “Animations” on page 5-120

• “Groups of Primitives” on page 5-146

• “Transformations” on page 5-148

• “Legends” on page 5-152

• “Fonts” on page 5-156

• “Colors” on page 5-158

• “Save and Export Pictures” on page 5-163

• “Import Pictures” on page 5-167

• “Cameras in 3D” on page 5-169

• “Possible Strange Effects in 3D” on page 5-177

5 Graphics and Animations

Gallery

In this section...

“2D Function and Curve Plots” on page 5-2

“Other 2D examples” on page 5-6

“3D Functions, Surfaces, and Curves” on page 5-15

We present a collection of pictures illustrating the capabilities of the present
MuPAD graphics system. These pictures are created at various places in this
document where they are used to demonstrate certain features of the graphics
system. A reference to the location of detailed documentation is provided
along with each picture in this gallery. There, further details including the
MuPAD commands for generating the picture can be found.

2D Function and Curve Plots
The following picture shows a plot of several functions. Singularities are
highlighted by “vertical asymptotes.” See 2D Function Graphs: plotfunc2d for
details:
plotfunc2d(sin(x)/x, x*cos(x), tan(x), x = -4..4):

5-2

Gallery

The following picture shows a function plot together with a spline interpolation
through a set of sample points. See section Some Examples for details:
f := x -> x*exp(-x)*sin(5*x): data := [[i/3, f(i/3)] $ i = 0..9]: S :=
numeric::cubicSpline(op(data)): plot(plot::Function2d(f(x), x = 0..3, Color
= RGB::Red, LegendText = expr2text(f(x))), plot::PointList2d(data, Color =
RGB::Black), plot::Function2d(S(x), x = 0..3, Color = RGB::Blue, LegendText
= "spline interpolant"), GridVisible = TRUE, SubgridVisible = TRUE,
LegendVisible = TRUE):

delete f, data, S:The following picture shows a hatched area between
functions. See the examples on the help page of plot::Hatch for details:
f := plot::Function2d(sin(x), x = -4..4, Color = RGB::Blue): g :=
plot::Function2d(cos(2*x), x = -4..4, Color = RGB::Black): h := plot::Hatch(f, g):
plot(f, g, h):

5-3

5 Graphics and Animations

delete f, g, h:The following picture demonstrates some layout possibilities. See
the examples on the help page of Layout for details:
S1 := plot::Scene2d(plot::Function2d(sin(x), x = 0..2*PI), Left = 0.02, Bottom =
0.46, Header = "the sine function"): S2 := plot::Scene2d(plot::Function2d(cos(x),
x = 0..2*PI), Left = 0.51, Bottom = 0.46, Header = "the cosine function"): S3 :=
plot::Scene2d(plot::Function2d(tan(x), x = 0..PI), Left = 0.02, Bottom = 0.02,
Header = "the tan function"): S4 := plot::Scene2d(plot::Function2d(cot(x), x =
0..PI), Left = 0.51, Bottom = 0.02, Header = "the cot function"): plot(S1, S2,
S3, S4, Layout = Relative, Width = 120*unit::mm, Height = 80*unit::mm,
BorderWidth = 0.5*unit::mm, HeaderFont = ["Times New Roman", 18,
Bold], Header = "trigonometric functions", plot::Scene2d::Width = 0.475,
plot::Scene2d::Height = 0.42, plot::Scene2d::BorderWidth = 0.2*unit::mm,
plot::Scene2d::HeaderFont = ["Times New Roman", Italic, 12]):

5-4

Gallery

delete S1, S2, S3, S4:The following picture demonstrates the construction of
cycloids via points fixed to a rolling wheel. See section Some Examples for an
animated version and details:
x:= 4*PI: // Use the value 4*PI for the animation parameter xWheelRadius := 1:
WheelCenter := [x, WheelRadius]: WheelRim := plot::Circle2d(WheelRadius,
WheelCenter, // x = 0..4*PI, LineColor = RGB::Black): WheelHub :=
plot::Point2d(WheelCenter, // x = 0..4*PI, PointColor = RGB::Black):
WheelSpoke := plot::Line2d(WheelCenter, [WheelCenter[1] +
1.5*WheelRadius*sin(x), WheelCenter[2] + 1.5*WheelRadius*cos(x)], //
x = 0..4*PI, LineColor = RGB::Black): color:= [RGB::Red, RGB::Green,
RGB::Blue]: r := [1.5*WheelRadius, 1.0*WheelRadius, 0.5*WheelRadius]:
for i from 1 to 3 do Point[i] := plot::Point2d([WheelCenter[1] + r[i]*sin(x),
WheelCenter[2] + r[i]*cos(x)], // x = 0..4*PI, PointColor = color[i], PointSize
= 2.0*unit::mm): Cycloid[i] := plot::Curve2d([y + r[i]*sin(y), WheelRadius
+ r[i]*cos(y)], y = 0..x, // x = 0..4*PI, LineColor = color[i]): end_for:
plot(WheelRim, WheelHub, WheelSpoke, Point[i] $ i = 1..3, Cycloid[i] $ i =
1..3, Scaling = Constrained, Width = 120*unit::mm, Height = 60*unit::mm):

5-5

5 Graphics and Animations

delete x, color, r, i, Point, Cycloid:The following picture demonstrates hatched
areas inside curves. See the examples on the help page of plot::Hatch for
details:
c := plot::Curve2d([sin(5*x), cos(7*x)], x = 0..2*PI): h := plot::Hatch(c, 0..1):
c::AdaptiveMesh := 2: plot(c, h):

delete c, h:

Other 2D examples
The following picture shows an imported bitmap inside function plots. See
section Importing Pictures for details:
READPATH := READPATH, "DATA": [width, height, gauss] :=
import::readbitmap("Gauss.ppm"): pdf := stats::normalPDF(0, 1): cdf
:= stats::normalCDF(0, 1): plot(plot::Scene2d(plot::Function2d(pdf(x),

5-6

Gallery

x = -4..7), plot::Function2d(cdf(x), x = -4..7), Width = 1, Height = 1),
plot::Scene2d(plot::Raster(gauss), Scaling = Constrained, Width = 0.3, Height
= 0.6, Bottom = 0.25, Left = 0.6, BorderWidth = 0.5*unit::mm, Footer = "C.F.
Gauss", FooterFont = [8]), Layout = Relative):

delete width, height, gauss, pdf, cdf:The following picture shows some frames
of an animation of the perturbed orbit of a small planet kicked out of a solar
system by a giant planet after a near-collision. See section Example 3 for
details of the animation:
ms := 1: m1 := 0.04: m2 := 0.0001: Y :=
numeric::odesolve2(numeric::ode2vectorfield({xs’’(t) =
-m1*(xs(t)-x1(t))/sqrt((xs(t)-x1(t))^2 + (ys(t)-y1(t))^2)^3
-m2*(xs(t)-x2(t))/sqrt((xs(t)-x2(t))^2 + (ys(t)-y2(t))^2)^3, ys’’(t)
= -m1*(ys(t)-y1(t))/sqrt((xs(t)-x1(t))^2 + (ys(t)-y1(t))^2)^3
-m2*(ys(t)-y2(t))/sqrt((xs(t)-x2(t))^2 + (ys(t)-y2(t))^2)^3, x1’’(t)
= -ms*(x1(t)-xs(t))/sqrt((x1(t)-xs(t))^2 + (y1(t)-ys(t))^2)^3
-m2*(x1(t)-x2(t))/sqrt((x1(t)-x2(t))^2 + (y1(t)-y2(t))^2)^3, y1’’(t)
= -ms*(y1(t)-ys(t))/sqrt((x1(t)-xs(t))^2 + (y1(t)-ys(t))^2)^3
-m2*(y1(t)-y2(t))/sqrt((x1(t)-x2(t))^2 + (y1(t)-y2(t))^2)^3, x2’’(t)
= -ms*(x2(t)-xs(t))/sqrt((x2(t)-xs(t))^2 + (y2(t)-ys(t))^2)^3
-m1*(x2(t)-x1(t))/sqrt((x2(t)-x1(t))^2 + (y2(t)-y1(t))^2)^3, y2’’(t)
= -ms*(y2(t)-ys(t))/sqrt((x2(t)-xs(t))^2 + (y2(t)-ys(t))^2)^3
-m1*(y2(t)-y1(t))/sqrt((x2(t)-x1(t))^2 + (y2(t)-y1(t))^2)^3, xs(0) = -m1 , x1(0) =
ms, x2(0) = 0, ys(0) = 0.7*m2, y1(0) = 0, y2(0) = -0.7*ms, xs’(0) = -1.01*m2,
x1’(0) = 0, x2’(0) = 1.01*ms, ys’(0) = -0.9*m1, y1’(0) = 0.9*ms, y2’(0) = 0}, [xs(t),

5-7

5 Graphics and Animations

xs’(t), ys(t), ys’(t), x1(t), x1’(t), y1(t), y1’(t), x2(t), x2’(t), y2(t), y2’(t)])): dt :=
0.05: imax := 516: /* ---------------- the full animation ------------------ plot(// The
sun: plot::Point2d(Y(t)[1], Y(t)[3], Color = RGB::Orange, VisibleFromTo = t..t
+ 0.99*dt, PointSize = 4*unit::mm) $ t in [i*dt $ i = 0..imax], // The giant
planet: plot::Point2d(Y(t)[5], Y(t)[7], Color = RGB::Red, VisibleFromTo = t..t
+ 0.99*dt, PointSize = 3*unit::mm) $ t in [i*dt $ i = 0..imax], // The orbit
of the giant planet: plot::Line2d([Y(t - dt)[5], Y(t - dt)[7]], [Y(t)[5], Y(t)[7]],
Color = RGB::Red, VisibleAfter = t) $ t in [i*dt $ i = 1..imax], // The small
planet: plot::Point2d(Y(t)[9], Y(t)[11], Color = RGB::Blue, VisibleFromTo
= t..t + 0.99*dt, PointSize = 2*unit::mm) $ t in [i*dt $ i = 0..imax], // The
orbit of the small planet: plot::Line2d([Y(t - dt)[9], Y(t - dt)[11]], [Y(t)[9],
Y(t)[11]], Color = RGB::Blue, VisibleAfter = t) $ t in [i*dt $ i = 1..imax]):
----------------------------- */ // Four frames only in the Gallery for i from 1 to
imax do // fill the remember table of Y t:= i*dt + 0.99*dt; Y(t); end_for:
T:= imax*dt + 0.99*dt: framesbeforelast:= 6: myframes:= [72, 236, 371,
imax-framesbeforelast]: for ii in myframes do tt:= ii*dt + 0.99*dt; S[ii]:=
plot::Scene2d(plot::Point2d(Y(tt)[1], Y(tt)[3], Color = RGB::Orange, PointSize
= 4*unit::mm), plot::Point2d(Y(tt)[5], Y(tt)[7], Color = RGB::Red, PointSize =
3*unit::mm), plot::Point2d(Y(tt)[9], Y(tt)[11], Color = RGB::Blue, PointSize =
2*unit::mm), plot::Line2d([Y(t - dt)[5], Y(t - dt)[7]], [Y(t)[5], Y(t)[7]], Color =
RGB::Red) $ t in [i*dt + 0.99*dt $ i = 1..ii], plot::Line2d([Y(t - dt)[9], Y(t -
dt)[11]], [Y(t)[9], Y(t)[11]], Color = RGB::Blue) $ t in [i*dt + 0.99*dt $ i =
1..ii], ViewingBoxYRange = Y(T-framesbeforelast*dt)[11]..Automatic,
plot::Text2d("Frame ".expr2text(ii), [0.4, -1.2], HorizontalAlignment = Left,
VerticalAlignment = BaseLine, TitleFont = [8])): end_for: plot(S[ii] $ ii in
myframes, TicksNumber = Low, plot::Scene2d::BorderWidth = 0.2*unit::mm);

5-8

Gallery

delete ms, m1, m2, Y, dt, imax, t, ii, T, S, framesbeforelast:The following
picture shows three solution curves of an ODE inside the directional vector
field associated with the ODE. See the examples on the help page of
plot::VectorField2d for details:
field := plot::VectorField2d([1, sin(x) + cos(y)], x = 0..6, y = 0..2.5, Mesh =
[31, 26]): f := (x, y) -> [sin(x) + cos(y[1])]: solution1 := numeric::odesolve2(f,
0, [0.4]): curve1 := plot::Function2d(solution1(x)[1], x = 0..6, LineColor
= RGB::Blue): solution2 := numeric::odesolve2(f, 0.5, [1.5]): curve2 :=
plot::Function2d(solution2(x)[1], x = 0.5..6, LineColor = RGB::Black): solution3
:= numeric::odesolve2(f, 1, [1.2]): curve3 := plot::Function2d(solution3(x)[1],
x = 1..6, LineColor = RGB::GreenDark): plot(field, curve1, curve2, curve3,
GridVisible = TRUE):

5-9

5 Graphics and Animations

delete field, f, curve1, curve2, curve3:The following picture shows the
Mandelbrot set together with two blow ups of regions of special interest. See
the examples on the help page of plot::Density for details:
f := proc(x, y) local c, z, n; begin c := x + I*y: z := 0.0: for n from 0 to 100
do z := z^2 + c: if abs(z) > 2 then break; end_if; end_for: if n < 70 then n
mod 5; else n - 70; end_if; end_proc: xmesh := 100: ymesh := 100: xmin[1] :=
-2.0: xmax[1] := 0.5: ymin[1] := -1.2: ymax[1] := 1.2: p1 := plot::Density(f, x =
xmin[1].. xmax[1], y = ymin[1]..ymax[1], XMesh = xmesh, YMesh = ymesh,
FillColor = RGB::Black, FillColor2 = RGB::Red): xmin[2] := -0.24: xmax[2] :=
-0.01: ymin[2] := 0.63: ymax[2] := 0.92: r1 := plot::Rectangle(xmin[2]..xmax[2],
ymin[2]..ymax[2], LineColor = RGB::White): dx := (xmax[2] - xmin[2])/xmesh:
dy := (ymax[2] - ymin[2])/ymesh: A := array(1..ymesh, 1..xmesh, [[f(xmin[2]+
(j - 1/2)*dx, ymin[2] + (i - 1/2)*dy) $ j = 1..xmesh] $ i = 1..ymesh]): p2 :=
plot::Density(A, x = xmin[2]..xmax[2], y = ymin[2]..ymax[2], FillColor =
RGB::Black, FillColor2 = RGB::Red): xmin[3] := -0.045: xmax[3] := -0.015:
ymin[3] := 0.773: ymax[3] := 0.815: r2 := plot::Rectangle(xmin[3]..xmax[3],
ymin[3]..ymax[3], LineColor = RGB::White): dx := (xmax[3] - xmin[3])/xmesh:
dy := (ymax[3] - ymin[3])/ymesh: L := [[f(xmin[3] + (j - 1/2)*dx, ymin[3]
+ (i - 1/2)*dy) $ j= 1..xmesh] $ i = 1..ymesh]: p3 := plot::Density(L, x =
xmin[3]..xmax[3], y = ymin[3]..ymax[3], FillColor = RGB::Black, FillColor2 =
RGB::Red): p2::XRange := 0.60..1.60: p2::YRange := 0.05.. 1.15: p3::XRange :=
0.60..1.60: p3::YRange := -1.15..-0.05: plot(p1, p2, p3, plot::Arrow2d([(xmin[2]
+ xmax[2])/2, (ymin[2] + ymax[2])/2], [(p2::XMin + p2::XMax)/2, (p2::YMin +
p2::YMax)/2], LineColor = RGB::Blue), plot::Arrow2d([1.50, 0.65], [(p3::XMin
+ p3::XMax)/2, (p3::YMin + p3::YMax)/2], LineColor = RGB::Blue)):

5-10

Gallery

delete f,xmesh,ymesh,xmin,xmax,ymin,ymax,dx,dy,A,p1,r1,p2,r2,L,p3:The
following picture shows several rotated copies of a function graph. See the
examples on the help page of plot::Rotate2d for details:
f := plot::Function2d(sin(x^3)/(x^2+1), x = -5..5, Mesh = 300):
plot(plot::Rotate2d(f, Angle = PI/11*a) $ a = 0..10):

delete f:The following picture shows a data plot of type plot::Bars2d. See the
examples on the help page of plot::Bars2d for details:
/* plot(plot::Bars2d([[5, 10, 24, -3], [6, 5, 2, 18], [19, 45, 12, -10]], Colors
= [RGB::Red, RGB::Green, RGB::Blue], Shadows = TRUE)) */ data :=
[[25 , 24.6, 30.8], [2 , 2.8, 11], [7.1, 3.3, 4.05]]: sw := 1.5: bw := 2.0:

5-11

5 Graphics and Animations

n := nops(data): w := sw + bw: myticks := [(i-1)* w + sw + bw/2 $ i =
1..n]: m := nops(data[1]): datalabels := ["Prognos", "LAGA", "BDE"]: //
cumulative data for the groups datasums := _concat(datalabels[i].": ".
expr2text(_plus(data[j][i]$j=1..m)). " Mio. t " $i=1..n): // generate a list of text
objects containing the data values // and place them in the centers of the bars:
datatext := []: for i from 1 to n do h := 0; for j from 1 to m do d := data[j][i];
datatext := datatext, plot::Text2d(expr2text(d), [myticks[i], h + d/2], TextFont
= [8, RGB::White], VerticalAlignment = Center, HorizontalAlignment
= Center); h := h + d end end: S1:=plot::Scene2d(plot::Bars2d(data,
Colors=[RGB::LimeGreen, RGB::Blue, RGB::Red], GroupStyle = SingleBars,
BarCenters = [myticks[i] $ i=1..n], BarWidths = [[bw]], DrawMode =
Vertical), // scene options: ViewingBox = [0 .. w*n + sw, 0 .. 50], // options
for the grid XGridVisible = FALSE, YGridVisible = TRUE, XSubgridVisible
= FALSE, YSubgridVisible = TRUE, GridLineColor = RGB::DarkGrey,
SubgridLineColor = RGB::DarkGrey, // options for the axes Axes = Boxed,
AxesTips = FALSE, AxesInFront = TRUE, AxesTitleFont = ["Arial", 12, Bold],
XAxisVisible = TRUE, YAxisTitleOrientation = Vertical, YAxisTitleAlignment
= Center, YAxisTitle = "Mio. t", XAxisTitle = "", // options for the ticks
along the axes TicksLabelFont = ["Arial", 10], XTicksVisible = FALSE,
XTicksNumber = None, XTicksAt = [myticks[i] = datalabels[i] $ i=1..n],
// layout RightMargin = 50, // annotation datatext, // header and footer
Header = "Kapazitäten in Mio. t", HeaderFont = ["Arial", 12, Bold], Footer
= "\n\nBerücksichtigte Abfallmengen:\n".datasums, FooterFont = ["Arial",
8], FooterAlignment = Left, // use a yellowish background BackgroundColor
= [0.886275, 0.870588, 0.294118]): S2 := plot::Scene2d(ViewingBox =
[0..20, 0..50], Axes = None, plot::Rectangle(13..13.5, 35..36, Filled = TRUE,
FillPattern = Solid, FillColor = RGB::Red, LineColor = RGB::Black),
plot::Text2d("fehlende Kapazitäten\n(Entsorgungslücke)", [14, 35],
HorizontalAlignment = Left, TextFont = ["Arial", 8]), plot::Rectangle(13..13.5,
29..30, Filled = TRUE, FillPattern = Solid, FillColor = RGB::Blue, LineColor =
RGB::Black), plot::Text2d("geplante und potentielle\nKapazitäten", [14, 29],
HorizontalAlignment = Left, TextFont = ["Arial", 8]), plot::Rectangle(13..13.5,
23..24, Filled = TRUE, FillPattern = Solid, FillColor = RGB::Green,
LineColor = RGB::Black), plot::Text2d("sichere Kapazitäten", [14, 23],
HorizontalAlignment = Left, TextFont = ["Arial", 8])): S1::Width := 1:
S1::Height := 1: S2::Width := 1: S2::Height := 1: S1::Bottom := 0: S1::Left :=
0: S2::Bottom := 0: S2::Left := 0: S1::BackgroundTransparent := FALSE:
S2::BackgroundTransparent := TRUE: plot(S1, S2, Layout = Relative)

5-12

Gallery

The following picture shows the image of a rectangle in the complex plane
under the map (z) -> sin(z^2) . See the examples on the help page of
plot::Conformal for details:
plot(plot::Conformal(sin(z^2), z = 0..1+I, Mesh = [50, 50])):

The following picture shows some elliptic curves generated as a contour plot.
See the examples on the help page of plot::Implicit2d for details:
plot(plot::Implicit2d(y^2 - x^3 + 4*x, x = -3..3, y = -4 ..4, Contours = [c $ c
= -3..6]))

5-13

5 Graphics and Animations

The following picture shows the Feigenbaum diagram of the logistic map. See
the examples on the help page of plot::PointList2d for details:
f := (p, x) -> p*x*(1-x): P := 500: // number of steps in p direction N := 200:
// transitional steps before we are close to the cycle M := 300: // maximal
number of points on the cycle pmin := 2.8: // Consider p between pmax :=
4.0: // pmin and pmax plotdata := []: for p in [pmin + i*(pmax - pmin)/P $ i
= 0..P] do // First, do N iterations to drive the // point x towards the limit
cycle x:= 0.5: for i from 1 to N do x:= f(p, x): end_for: // consider the next M
iterates and use them as plot data: xSequence:= table(): xSequence[1]:= x; for
i from 2 to M do x:= f(p, x): if abs(x - xSequence[1]) < 10^(-5) then // We are
back at the beginning of the cycle; // the points will repeat. Go to the next p
value. break; else xSequence[i]:= x; end_if; end_for: plotdata:= plotdata . [[p,
rhs(x)] $ x in xSequence]; end_for: plot(plot::PointList2d(plotdata, PointColor
= RGB::Black, PointSize = 0.25*unit::mm)):

5-14

Gallery

delete f, P, N, M, pmit, pmax, plotdata, p, x, i, xSequence:The following
picture shows a fractal object generated by a turtle plot of a Lindenmayer
system. See the examples on the help page of plot::Lsys for details:
plot(plot::Lsys(23*PI/180, "F", "F" = "FF-[-F+F+F]+[+F-F-F]", Generations
= 4)):

3D Functions, Surfaces, and Curves
The following picture demonstrates a 3D function plot of f(x, y) =

besselJ(0, sqrt(x^2+y^2)) , where besselJ(0,z) is the

5-15

5 Graphics and Animations

Bessel function of the first kind. See the examples on the help page of
plot::Function3d for details:
plotfunc3d(besselJ(0, sqrt(x^2 + y^2)), x = -20..20, y = -20..20, Submesh
= [2, 2]):

The following picture demonstrates a 3D function plot enhanced by a
coordinate grid. See the examples on the help page of GridVisible for details:
plot(plot::Function3d(cos(x*PI)*cos(y*PI), x = 0..2, y = 0..2), TicksNumber
= Low, TicksBetween = 9, GridVisible = TRUE, SubgridVisible = TRUE,
GridLineWidth = 0.5*unit::mm, SubgridLineWidth = 0.1*unit::mm)

5-16

Gallery

The following picture demonstrates a 3D function plot of

sqrt(1-x^2-y^2) , which is not real for some parts of the parameter
space. See the documentation of plot::Function3d for details:
plot(plot::Function3d(sqrt(1-x^2-y^2), x=-1..1, y=-1..1))

The following picture shows “Klein’s bottle” (a famous topological object). This
surface does not have an orientation; there is no “inside” and no “outside” of
this object. See the examples on the help page of plot::Surface for details:

5-17

5 Graphics and Animations

bx := u -> -6*cos(u)*(1 + sin(u)): by := u -> -14*sin(u): r := u -> 4 - 2*cos(u):
x := (u, v) -> piecewise([u <= PI, bx(u) - r(u)*cos(u)*cos(v)], [PI < u, bx(u)
+ r(u)*cos(v)]): y := (u, v) -> r(u)*sin(v): z := (u, v) -> piecewise([u <= PI,
by(u) - r(u)*sin(u)*cos(v)], [PI < u, by(u)]): KleinBottle:= plot::Surface([x, y,
z], u = 0..2*PI, v = 0..2*PI, Mesh = [35, 31], LineColor = RGB::Black.[0.2],
FillColorFunction = RGB::MuPADGold): plot(KleinBottle, Axes = None,
Scaling = Constrained, Width = 60*unit::mm, Height = 72*unit::mm,
BackgroundStyle = Pyramid):

delete bx, by, r, x, y, z, KleinBottle:The following picture demonstrates the
reconstruction of an object with rotational symmetry from measurements of
its radius at various points. See section Some Examples for details:
samplepoints := [0.00, 0.60], [0.10, 0.58], [0.20, 0.55], [0.30, 0.51], [0.40, 0.46],
[0.50, 0.40], [0.60, 0.30], [0.70, 0.15], [0.80, 0.23], [0.90, 0.24], [0.95, 0.20],
[1.00, 0.00]: r := numeric::cubicSpline(samplepoints): plot(plot::XRotate(r(x),
x = 0..1, AngleRange = 0.6*PI..2.4*PI), plot::Curve3d([x, 0, r(x)], x = 0..1,
LineWidth = 0.5*unit::mm, Color = RGB::Black), plot::PointList3d([[p[1], 0,
p[2]] $ p in samplepoints], PointSize = 2.0*unit::mm, Color = RGB::Red),
CameraDirection = [70, -70, 40]):

5-18

Gallery

delete samplepoints, r:The following picture shows the “Lorenz attractor.” See
section Cameras in 3D for an animated version and details:
f := proc(t, Y) local x, y, z; begin [x, y, z] := Y: [p*(y - x), -x*z + r*x - y, x*y -
b*z] end_proc: p := 10: r := 28: b := 1: Y0 := [1, 1, 1]: Gxyz := (t, Y) -> Y: Gyz
:= (t, Y) -> [-14, Y[2], Y[3]]: Gxz := (t, Y) -> [Y[1], 27 , Y[3]]: Gxy := (t, Y) ->
[Y[1], Y[2], 0]: object := plot::Ode3d(f, [i/10 $ i=1..500], Y0, [Gxyz, Style =
Splines, Color = RGB::Red], [Gyz, Style = Splines, Color = RGB::LightGrey],
[Gxz, Style = Splines, Color = RGB::LightGrey], [Gxy, Style = Splines, Color =
RGB::LightGrey]): camera := plot::Camera([-1 + 100*cos(a), 6 + 100*sin(a),
120], [-1, 6, 25], PI/6, a = 0..2*PI, Frames = 120): camera:= CameraDirection =
[160, -260, 180]: // for the gallery plot(object, camera, TicksNumber = Low):

5-19

5 Graphics and Animations

delete f, p, Gxyz, Gyz, Gxz, Gxy, object, camera:The following picture shows a
3D level surface of a function (the solution set of z2 = sin(z - x2y2)). See the
examples on the help page of plot::Implicit3d for details:
plot(plot::Implicit3d(z^2 - sin(z - x^2*y^2) = 0, x = -1..1, y = -1..1, z = 0..1,
AdaptiveMesh = 2, MeshVisible = TRUE, LineColor = RGB::Black.[0.15])):

5-20

Easy Plotting: Graphs of Functions

Easy Plotting: Graphs of Functions

In this section...

“2D Function Graphs: plotfunc2d” on page 5-21

“3D Function Graphs: plotfunc3d” on page 5-32

“Attributes for plotfunc2d and plotfunc3d” on page 5-43

The probably most important graphical task in a mathematical context is to
visualize function graphs, i.e., to plot functions. There are two graphical
routines plotfunc2d and plotfunc3d which allow to create 2D plots of functions
with one argument (such as f(x) = sin(x), f(x) = x*ln(x) etc.) or 3D
plots of functions with two arguments (such as f(x, y) = sin(x^2 + y^2),
f(x, y) = y*ln(x) - x*ln(y) etc.). The calling syntax is simple: just
pass the expression that defines the function and, optionally, a range for
the independent variable(s).

2D Function Graphs: plotfunc2d
We consider 2D examples, i.e., plots of univariate functions y = f(x). Here is
one period of the sine function:
plotfunc2d(sin(x), x = 0..2*PI):

5-21

5 Graphics and Animations

If several functions are to be plotted in the same graphical scene, just pass a
sequence of function expressions. All functions are plotted over the specified
common range:
plotfunc2d(sin(x)/x, x*cos(x), tan(x), x = -4..4):

Functions that do not allow a simple symbolic representation by an expression
can also be defined by a procedure that produces a numerical value f(x) when
called with a numerical value x from the plot range. In the following example
we consider the largest eigenvalue of a symmetric 3 3 matrix that contains a
parameter x. We plot this eigenvalue as a function of x:
f := x -> max(numeric::eigenvalues(matrix([[-x, x, -x], [x, x, x], [-x, x, x^2]]))):
plotfunc2d(f, x = -1..1):

5-22

Easy Plotting: Graphs of Functions

The name x used in the specification of the plotting range provides the name
that labels the horizontal axis. Functions can also be defined by piecewise
objects:
plotfunc2d(piecewise([x < 1, 1 - x], [1 < x and x < 2, 1/2], [x > 2, 2 - x]), x = -2..3)

Note that there are gaps in the definition of the function above: no function
value is specified for x = 1 and x = 2. This does not cause any problem, because
plotfunc2d simply ignores all points that do not produce real numerical

5-23

5 Graphics and Animations

values. Thus, in the following example, the plot is automatically restricted to
the regions where the functions produce real values:
plotfunc2d(sqrt(8 - x^4), ln(x^3 + 2)/(x - 1), x = -2 ..2):

When several functions are plotted in the same scene, they are drawn in
different colors that are chosen automatically. With the Colors attribute one
may specify a list of RGB colors that plotfunc2d shall use:
plotfunc2d(x, x^2, x^3, x^4, x^5, x = 0..1, Colors = [RGB::Red, RGB::Orange,
RGB::Yellow, RGB::BlueLight, RGB::Blue]):

5-24

Easy Plotting: Graphs of Functions

Animated 2D plots of functions are created by passing function expressions
depending on a variable (x, say) and an animation parameter (a, say) and
specifying a range both for x and a:
plotfunc2d(cos(a*x), x = 0..2*PI, a = 1..2):

Once the plot is created, the first frame of the picture appears as a static plot.
After clicking on the picture, the graphics tool starts playing the animation.
There are the usual controls to stop, start, and fast-forward/rewind the
animation.

The default number of frames of the animation is 50. If a different value is
desired, just pass the attribute Frames = n, where n is the number of frames
that shall be created:
plotfunc2d(sin(a*x), sin(x - a), x = 0..PI, a = 0..4*PI, Colors = [RGB::Blue,
RGB::Red], Frames = 200):

5-25

5 Graphics and Animations

Apart from the color specification or the Frames number, there is a large
number of further attributes that may be passed to plotfunc2d. Each attribute
is passed as an equation AttributeName = AttributeValue to plotfunc2d.
Here, we only present some selected attributes. See the section on attributes
for plotfunc for further tables with more attributes.

attribute name
possible
values/example meaning default

Height 8*unit::cm physical height
of the picture

80*unit::mm

Width 12*unit::cm physical width of
the picture

120*unit::mm

Footer string footer text "" (no footer)

Header string header text "" (no header)

Title string title text "" (no title)

TitlePosition [real value, real
value]

coordinates of
the lower left
corner of the title

GridVisible TRUE, FALSE visibility of
“major” grid lines
in all directions

FALSE

5-26

Easy Plotting: Graphs of Functions

attribute name
possible
values/example meaning default

SubgridVisible TRUE, FALSE visibility of
“minor” grid lines
in all directions

FALSE

AdaptiveMesh integer ≥ 2 number of
sample points
of the numerical
mesh

121

Axes None, Automatic,
Boxed, Frame,
Origin

axes type Automatic

AxesVisible TRUE, FALSE visibility of all
axes

TRUE

AxesTitles [string,
string]

titles of the axes ["x","y"]

CoordinateType LinLin, LinLog,
LogLin, LogLog

linear-linear,
linear-logarithmic,
logarithmic-linear,
log-log

LinLin

Colors list of RGB
values

line colors first 10 entries of
RGB::ColorList

Frames integer ≥ 0 number of frames
of an animation

50

LegendVisible TRUE, FALSE legend on/off TRUE

LineColorType Dichromatic,
Flat,
Functional,
Monochrome,
Rainbow

color scheme Flat

Mesh integer ≥ 2 number of
sample points
of the numerical
mesh

121

5-27

5 Graphics and Animations

attribute name
possible
values/example meaning default

Scaling Automatic,
Constrained,
Unconstrained

scaling mode Unconstrained

TicksNumber None, Low,
Normal, High

number of
labeled ticks at
all axes

Normal

VerticalAsymptotesVisibleTRUE, FALSE vertical
asymptotes
on/off

TRUE

ViewingBoxYRangeymin..ymax restricted
viewing range
in y direction

Automatic

YRange ymin..ymax restricted
viewing range
in y direction
(equivalent to
ViewingBoxYRange)

Automatic

The following plot example features the notorious function sin(1/x) that
oscillates wildly near the origin:
plotfunc2d(sin(1/x), x = -0.5..0.5):

5-28

Easy Plotting: Graphs of Functions

Clearly, the default of 121 sample points used by plotfunc2d does not suffice to
create a sufficiently resolved plot. We increase the number of numerical mesh
points via the Mesh attribute. Additionally, we increase the resolution depth
of the adaptive plotting mechanism from its default value AdaptiveMesh
= 2 to AdaptiveMesh = 4:
plotfunc2d(sin(1/x), x = -0.5..0.5, Mesh = 500, AdaptiveMesh = 4):

The following call specifies a header via Header = "The function
sin(x^2)". The distance between labeled ticks is set to 0.5 along the x axis

5-29

5 Graphics and Animations

and to 0.2 along the y axis via XTicksDistance = 0.5 and YTicksDistance
= 0.2, respectively. Four additional unlabeled ticks between each pair of
labeled ticks are set in the x direction via XTicksBetween = 4. One additional
unlabeled tick between each pair of labeled ticks in the y direction is requested
via YTicksBetween = 1. Grid lines attached to the ticks are “switched on” by
GridVisible = TRUE and SubgridVisible = TRUE:
plotfunc2d(sin(x^2), x = 0..7, Header = "The function sin(x^2)", XTicksDistance
= 0.5, YTicksDistance = 0.2, XTicksBetween = 4, YTicksBetween = 1,
GridVisible = TRUE, SubgridVisible = TRUE):

When singularities are found in the function, an automatic clipping is
called trying to restrict the vertical viewing range in some way to obtain a
“reasonably” scaled picture. This is a heuristic approach that sometimes needs
a helping adaptation “by hand”. In the following example, the automatically
chosen range between y ≈ - 1 and y ≈ 440 in vertical direction is suitable to
represent the 6th order pole at x = 1, but it does not provide a good resolution
of the first order pole at x = - 1:
plotfunc2d(1/(x + 1)/(x - 1)^6, x = -2..2):

5-30

Easy Plotting: Graphs of Functions

There is no good viewing range that is adequate for both poles because they
are of different order. However, some compromise can be found. We override
the automatic viewing range suggested by plotfunc2d and request a specific
viewing range in vertical direction via ViewingBoxYRange:
plotfunc2d(1/(x + 1)/(x - 1)^6, x = -2..2, ViewingBoxYRange = -10..10):

The values of the following function have a lower bound but no upper bound.
We use the attribute ViewingBoxYRange = Automatic..10 to let plotfunc2d

5-31

5 Graphics and Animations

find a lower bound for the viewing box by itself whilst requesting a specific
value of 10 for the upper bound:
plotfunc2d(exp(x)*sin(PI*x) + 1/(x + 1)^2/(x - 1)^4, x = -2..2,
ViewingBoxYRange = Automatic..10):

3D Function Graphs: plotfunc3d
We consider 3D examples, i.e., plots of bivariate functions z = f(x, y). Here
is a plot of the function sin(x2 + y2):
plotfunc3d(sin(x^2 + y^2), x = -2..2, y = -2..2):

5-32

Easy Plotting: Graphs of Functions

If several functions are to be plotted in the same graphical scene, just pass a
sequence of function expressions; all functions are plotted over the specified
common range:
plotfunc3d((x^2 + y^2)/4, sin(x - y)/(x - y), x = -2..2, y = -2..2):

Functions that do not allow a simple symbolic representation by an expression
can also be defined by a procedure that produces a numerical value f(x, y)
when called with numerical values x, y from the plot range. In the following

5-33

5 Graphics and Animations

example we consider the largest eigenvalue of a symmetric 3 3 matrix that
contains two parameters x, y. We plot this eigenvalue as a function of x and y:
f := (x, y) -> max(numeric::eigenvalues(matrix([[-y, x, -x], [x, y, x], [-x, x,
y^2]]))): plotfunc3d(f, x = -1..1, y = -1..1):

The names x, y used in the specification of the plotting range provide the labels
of the corresponding axes. Functions can also be defined by piecewise objects:
plotfunc3d(piecewise([x < y, y - x], [x > y, (y - x)^2]), x = 0..1, y = 0..1)

5-34

Easy Plotting: Graphs of Functions

Note that there are gaps in the definition of the function above: no function
value is specified for x = y. This does not cause any problem, because
plotfunc3d simply ignores points that do not produce real numerical values if
it finds suitable values in the neighborhood. Thus, missing points do not show
up in a plot if these points are isolated or are restricted to some 1-dimensional
curve in the x-y plane. If the function is not real valued in regions of nonzero
measure, the resulting plot contains holes. The following function is real
valued only in the disk x2 + y2 ≤ 1:
plotfunc3d(sqrt(1 - x^2 - y^2), x = 0..1, y = 0..1):

When several functions are plotted in the same scene, they are drawn in
different colors that are chosen automatically. With the Colors attribute one
may specify a list of RGB colors that plotfunc3d shall use:
plotfunc3d(2 + x^2 + y^2, 1 + x^4 + y^4, x^6 + y^6, x = -1..1, y = -1..1, Colors
= [RGB::Red, RGB::Green, RGB::Blue]):

5-35

5 Graphics and Animations

Animated 3D plots of functions are created by passing function expressions
depending on two variables (x, y, say) and an animation parameter (a, say)
and specifying a range for x, y, and a:
plotfunc3d(x^a + y^a, x = 0..2, y = 0..2, a = 1..2):

Once the plot is created, the first frame of the picture appears as a static plot.
After double-clicking on the picture, the animation starts. The usual controls
for stopping, going to some other point in time etc. are available.

5-36

Easy Plotting: Graphs of Functions

The default number of frames of the animation is 50. If a different value is
desired, just pass the attribute Frames = n, where n is the number of frames
that shall be created:
plotfunc3d(sin(a)*sin(x) + cos(a)*cos(y), x = 0..2*PI, y = 0..2*PI, a = 0..2*PI,
Frames = 32):

Apart from the color specification or the Frames number, there is a large
number of further attributes that may be passed to plotfunc3d. Each attribute
is passed as an equation AttributeName = AttributeValue to plotfunc3d.
Here, we only present some selected attributes. Section Attributes for
plotfunc2d and plotfunc3d provides further tables with more attributes.

plotfunc3d

attribute name
possible
values/example meaning default

Height 8*unit::cm physical height
of the picture

80*unit::mm

Width 12*unit::cm physical width of
the picture

120*unit::mm

Footer string footer text "" (no footer)

Header string header text "" (no header)

5-37

5 Graphics and Animations

plotfunc3d (Continued)

attribute name
possible
values/example meaning default

Title string title text "" (no title)

TitlePosition [real value, real
value]

coordinates of
the lower left
corner of the title

GridVisible TRUE, FALSE visibility of
“major” grid lines
in all directions

FALSE

SubgridVisible TRUE, FALSE visibility of
“minor” grid lines
in all directions

FALSE

AdaptiveMesh integer ≥ 0 depth of the
adaptive mesh

0

Axes Automatic,
Boxed, Frame,
Origin

axes type Boxed

AxesVisible TRUE, FALSE visibility of all
axes

TRUE

AxesTitles [string,
string,
string]

titles of the axes ["x","y","z"]

CoordinateType LinLinLin, ...,
LogLogLog

linear-linear-linear,
linear-logarithmic,
logarithmic-linear,
log-log plot

LinLinLin

Colors list of RGB
values

fill colors

Frames integer ≥ 0 number of frames
of the animation

50

LegendVisible TRUE, FALSE legend on/off TRUE

5-38

Easy Plotting: Graphs of Functions

plotfunc3d (Continued)

attribute name
possible
values/example meaning default

FillColorType Dichromatic,
Flat,
Functional,
Monochrome,
Rainbow

color scheme Dichromatic

Mesh [integer ≥ 2,
integer ≥ 2]

number of
“major” mesh
points

[25, 25]

Submesh [integer ≥ 0,
integer ≥ 0]

number of
“minor” mesh
points

[0, 0]

Scaling Automatic,
Constrained,
Unconstrained

scaling mode Unconstrained

TicksNumber None, Low,
Normal, High

number of
labeled ticks at
all axes

Normal

ViewingBoxZRangezmin..zmax restricted
viewing range
in z direction

Automatic

ZRange zmin..zmax restricted
viewing range
in z direction
(equivalent to
ViewingBoxZRange)

Automatic

In the following example, the default mesh of 25 25 sample points used by
plotfunc3d does not suffice to create a sufficiently resolved plot:
plotfunc3d(sin(x^2 + y^2), x = -3..3, y = -3..3):

5-39

5 Graphics and Animations

We increase the number of numerical mesh points via the Submesh attribute:
plotfunc3d(sin(x^2 + y^2), x = -3..3, y = -3..3, Submesh = [3, 3])

The following call specifies a header via Header = "The function sin(x -
y^2)". Grid lines attached to the ticks are “switched on” by GridVisible =
TRUE and SubgridVisible = TRUE:
plotfunc3d(sin(x - y^2), x = -2*PI..2*PI, y = -2..2, Header = "The function sin(x
- y^2)", GridVisible = TRUE, SubgridVisible = TRUE):

5-40

Easy Plotting: Graphs of Functions

When singularities are found in the function, an automatic clipping is
called trying to restrict the vertical viewing range in some way to obtain a
“reasonably” scaled picture. This is a heuristic approach that sometimes needs
a helping adaptation “by hand”. In the following example, the automatically
chosen range between z ≈ 0 and z ≈ 0.8 in vertical direction is suitable to
represent the pole at x = 1, y = 1, but it does not provide a good resolution
of the pole at x = - 1, y = 1:
plotfunc3d(1/((x + 1)^2 + (y - 1)^2)/((x - 1)^2 + (y - 1)^2)^5, x = -2..3, y = -2..3,
Submesh = [3, 3]):

5-41

5 Graphics and Animations

There is no good viewing range that is adequate for both poles because they
are of different order. We override the automatic viewing range suggested
by plotfunc3d and request a specific viewing range in the vertical direction
via ViewingBoxZRange:
plotfunc3d(1/((x + 1)^2 + (y - 1)^2)/((x - 1)^2 + (y - 1)^2)^5, x = -2..3, y = -2..3,
Submesh = [3, 3], ViewingBoxZRange = 0..0.1):

The values of the following function have a lower bound but no upper bound.
We use the attribute ViewingBoxZRange = Automatic..20 to let plotfunc2d
find a lower bound for the viewing box by itself whilst requesting a specific
value of 20 for the upper bound:
plotfunc3d(1/x^2/y^2 + exp(-x)*sin(PI*y), x = -2..2, y = -2..2,
ViewingBoxZRange = Automatic..20):

5-42

Easy Plotting: Graphs of Functions

Attributes for plotfunc2d and plotfunc3d
The function plotters plotfunc2d and plotfunc3d accept a large number
of attributes (options). In this section we give an overview over the most
important attributes. There is a help page for each attribute that provides
more detailed information and examples.

Attributes are passed as equations AttributeName = AttributeValue to
plotfunc2d and plotfunc3d. Several attributes can be passed simultaneously
as a sequence of such equations.

The attributes can be changed interactively in the property inspector. Click
on the plot to make subwindows appear for the “object browser” and the
“property inspector” (see section Viewer, Browser, and Inspector: Interactive
Manipulation). The functions plotted by plotfunc2d and plotfunc3d appear as
plot objects of type plot::Function2d and plot::Function3d, respectively. They
are embedded in a coordinate system inside a graphical scene. The scene is
embedded in a viewing area called the ‘Canvas.’ In the viewer, the various
plot attributes are associated with the different objects of this graphical
hierarchy. Typically, layout parameters and titles are set within the canvas,
whilst axes, grid lines, viewing boxes etc. are associated with the coordinate
system. Some attributes such as colors, line width, the numerical mesh size
etc. belong to the function graphs and can be set separately for each function
plotted by plotfunc2d/plotfunc3d.

5-43

5 Graphics and Animations

The last entry in the following tables provides the location of the attribute
in the graphical hierarchy of the object browser. For example, for changing
the background color of the picture, select the scene by double clicking the
‘Scene2d’/‘Scene3d’ entry in the object browser. Now, the property inspector
provides a tree of attributes with the nodes ‘Annotation,’ ‘Layout,’ and ‘Style.’
Opening the ‘Style’ sub-tree, one finds an entry for BackgroundColor which
allows to change the background color interactively.

Here is a table of the most important attributes for setting the layout and
the background of the picture:

attribute
name

possible
values/examplemeaning default

browser
entry

Width 12*unit::cm physical
width of
the picture

120*unit::mm Canvas

Height 8*unit::cm physical
height of
the picture

80*unit::mm Canvas

BackgroundColorRGB color color of the
background

RGB::White Scene2d/3d

BorderColor RGB color color of the
border

RGB::Grey50 Scene2d/3d

BorderWidth 1*unit::mm width of
the border

0 Scene2d/3d

Margin 1*unit::mm common
width
for all
margins:
BottomMargin,
LeftMargin,
etc.

1*unit::mm Scene2d/3d

BottomMargin 1*unit::mm width of
bottom
margin

1*unit::mm Scene2d/3d

5-44

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

LeftMargin 1*unit::mm width of
left margin

1*unit::mm Scene2d/3d

RightMargin 1*unit::mm width
of right
margin

1*unit::mm Scene2d/3d

TopMargin 1*unit::mm width of top
margin

1*unit::mm Scene2d/3d

BackgroundStyleFlat,
LeftRight,
TopBottom,
Pyramid

background
style of 3D
scenes

Flat Scene3d

BackgroundColor2RGB color secondary
color of the
background
(used
for color
blends)

RGB::Grey75 Scene3d

BackgroundTransparentTRUE, FALSE transparent
background?

FALSE Scene2d

An overall title can be set as a footer and/or a header. Here is a table of the
attributes determining the footer and/or header of the picture:

attribute
name

possible
values/examplemeaning default

browser
entry

Footer string footer text "" (no footer) Scene2d/3d

Header string header text "" (no
header)

Scene2d/3d

FooterAlignmentLeft, Center,
Right

horizontal
alignment

Center Scene2d/3d

5-45

5 Graphics and Animations

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

HeaderAlignmentLeft, Center,
Right

horizontal
alignment

Center Scene2d/3d

FooterFont see section
Fonts

font for the
footer

sans-serif 12 Scene2d/3d

HeaderFont see section
Fonts

font for the
header

sans-serif 12 Scene2d/3d

Apart from footers and/or headers of scenes and canvas, there are titles
associated with the functions. In contrast to footer and header, function
titles can be placed anywhere in the coordinate system via the attribute
TitlePosition. Typically, titles are associated with individual objects rather
than with entire scenes. Thus, when using plotfunc2d or plotfunc3d, a title
attribute will usually only be used when a single function is displayed.
However, several titles with separate positions can be set interactively in the
property inspector for each of the functions:

attribute
name

possible
values/examplemeaning default

browser
entry

Titlestring title text ""
(no
title)

Function2d/3d

TitlePosition[real value,
real value]

coordinates of the lower left corner of the title Function2d

TitlePosition[real
value,real
value,real
value]

coordinates of the lower left corner of the title Function3d

TitlePositionXreal value x coordinate of the lower left corner of the
title

Function2d/3d

TitlePositionYreal value y coordinate of the lower left corner of the
title

Function2d/3d

5-46

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

TitlePositionZreal value z coordinate of the lower left corner of the
title

Function3d

TitleFontsee section
Fonts

font for the titles sans-serif
11

Function2d/3d

bool(plot::getDefault(TitleFont) = ["sans-serif", 11])TRUE

If several functions are drawn simultaneously in one picture, it is useful
to display a legend indicating which color is used for which function. See
section Legends for further details on legends. Here is a table of the most
important attributes determining the form of the legend. The attributes
LegendEntry, LegendText, and LegendVisible = TRUE are set automatically
by plotfunc2d/plotfunc3d if more than one function is plotted. The property
inspector (Viewer, Browser, and Inspector: Interactive Manipulation) allows
to reset the legend entry for each function:

attribute
name

possible
values/examplemeaning default

browser
entry

LegendEntry TRUE, FALSE add this
function to
the legend?

TRUE Function2d/3d

LegendText string legend text Function2d/3d

LegendVisible TRUE, FALSE legend
on/off

TRUE Scene2d/3d

LegendPlacementTop, Bottom vertical
placement

Bottom Scene2d/3d

LegendAlignmentLeft, Center,
Right

horizontal
alignment

Center Scene2d/3d

LegendFont see section
Fonts

font for the
legend text

sans-serif 8 Scene2d/3d

5-47

5 Graphics and Animations

bool(plot::getDefault(LegendPlacement) = Bottom),
bool(plot::getDefault(LegendAlignment) = Center),
bool(plot::getDefault(LegendFont) = ["sans-serif", 8])TRUE, TRUE, TRUE

When singular functions are plotted, it is often useful to request a specific
viewing range. Here is a table of the most important attributes for setting
viewing ranges. In the interactive object browser, you will find them under
CoordinateSystem2d (CS2d) and CoordinateSystem3d (CS3d), respectively:

attribute
name

possible
values/examplemeaning default

browser
entry

ViewingBox[xmin..xmax,
ymin..ymax],
[Automatic,
Automatic]

viewing range in x and y direction [Automatic,
Automatic]

CS2d

ViewingBox[xmin..xmax,
ymin..ymax,
zmin..zmax],
[Automatic,
Automatic,
Automatic]

viewing range in x, y, z direction [Automatic,
Automatic,
Automatic]

CS3d

ViewingBoxXRangexmin..xmax viewing range in x direction Automatic..
Automatic

CS2d/3d

ViewingBoxYRangeymin..ymax viewing range in y direction Automatic..
Automatic

CS2d/3d

ViewingBoxZRangezmin..zmax viewing range in z direction Automatic..
Automatic

CS3d

ViewingBoxXMinxmin: real value
or Automatic

lowest viewing value in x direction Automatic CS2d/3d

ViewingBoxXMaxxmax: real value
or Automatic

highest viewing value in x direction Automatic CS2d/3d

ViewingBoxYMinymin: real value
or Automatic

lowest viewing value in y direction Automatic CS2d/3d

5-48

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

ViewingBoxYMaxymax: real value
or Automatic

highest viewing value in y direction Automatic CS2d/3d

ViewingBoxZMinzmin: real value
or Automatic

lowest viewing value in z direction Automatic CS3d

ViewingBoxZMaxzmax: real value
or Automatic

highest viewing value in z direction Automatic CS3d

In contrast to the routines of the plot library, plotfunc2d and plotfunc3d
also accept the attributes YMin, YMax, YRange and ZMin, ZMax, ZRange,
respectively, as shortcuts for the somewhat clumsy attribute names
ViewingBoxYMin etc. E.g.,
plotfunc2d(f(x), x = xmin..xmax, YRange = ymin..ymax)is equivalent to
plotfunc2d(f(x), x = xmin..xmax, ViewingBoxYRange = ymin..ymax)and
plotfunc3d(f(x, y), x = xmin..xmax, y = ymin..ymax, ZRange = zmin..zmax)is
equivalent to
plotfunc3d(f(x, y), x = xmin..xmax, y = ymin..ymax, ViewingBoxZRange =
zmin..zmax)Here is a table of the most important attributes for arranging
coordinate axes. In the interactive object browser, you will find them under
CoordinateSystem2d (CS2d) and CoordinateSystem3d (CS3d), respectively:

5-49

5 Graphics and Animations

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

Axes Automatic,
Boxed, Frame,
Origin

axes
type

Automatic CS2d/3d

AxesVisible TRUE, FALSE visibility
of all
axes

TRUE CS2d/3d

XAxisVisible TRUE, FALSE visibility
of the
x axis

TRUE CS2d/3d

YAxisVisible TRUE, FALSE visibility
of the
y axis

TRUE CS2d/3d

ZAxisVisible TRUE, FALSE visibility
of the
z axis

TRUE CS3d

AxesTitles [string,
string]

titles of
the axes
(2D)

["x","y"] CS2d

AxesTitles [string,
string,
string]

titles of
the axes
(3D)

["x","y","z"] CS3d

XAxisTitle string title
of the
x axis

"x" CS2d/3d

YAxisTitle string title
of the
y axis

"y" CS2d/3d

ZAxisTitle string title
of the
z axis

"z" CS3d

5-50

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

AxesTitleAlignmentBegin, Center,
End

alignment
for all
axes
titles

End CS2d

AxesTitleAlignmentBegin, Center,
End

alignment
for all
axes
titles

Center CS3d

XAxisTitleAlignmentBegin, Center,
End

alignment
for the
x axis
title

End CS2d

XAxisTitleAlignmentBegin, Center,
End

alignment
for the
x axis
title

Center CS3d

YAxisTitleAlignmentBegin, Center,
End

alignment
for the
y axis
title

End CS2d

YAxisTitleAlignmentBegin, Center,
End

alignment
for the
y axis
title

Center CS3d

ZAxisTitleAlignmentBegin, Center,
End

alignment
for the
z axis
title

Center CS3d

YAxisTitleOrientationVertical,
Horizontal

orientation
of the
y axis
title

Horizontal CS2d

5-51

5 Graphics and Animations

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

AxesTips TRUE, FALSE axes
with
tips?

TRUE CS2d/3d

AxesOrigin [real value,
real value]

crosspoint
of the
axes
(2D)

[0, 0] CS2d

AxesOrigin [real
value,real
value, real
value]

crosspoint
of the
axes
(3D)

[0, 0, 0] CS3d

AxesOriginX real value x value
of
AxesOrigin

0 CS2d/3d

AxesOriginY real value y value
of
AxesOrigin

0 CS2d/3d

AxesOriginZ real value z value
of
AxesOrigin

0 CS3d

AxesLineColor RGB color color of
the axes

RGB::Black CS2d/3d

AxesLineWidth 0.18*unit::mm physical
width of
the axes
lines

0.18*unit::mm CS2d/3d

5-52

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

AxesInFront TRUE, FALSE axes in
front
of the
objects?

FALSE CS2d

AxesTitleFont see section
Fonts

font for
the axes
titles

sans-serif 10 CS2d/3d

Here is a table of the most important attributes for setting tick marks and
tick labels along the axes. In the interactive object browser, you will find
them under CoordinateSystem2d (CS2d) and CoordinateSystem3d (CS3d),
respectively:

attribute
name

possible
values/example meaning default

browser
entry

TicksVisible TRUE, FALSE visibility
of ticks
along all
axes

TRUE CS2d/3d

XTicksVisibleTRUE, FALSE visibility
of ticks
along the
x axis

TRUE CS2d/3d

YTicksVisibleTRUE, FALSE visibility
of ticks
along the
y axis

TRUE CS2d/3d

ZTicksVisibleTRUE, FALSE visibility
of ticks
along the
z axis

TRUE CS3d

5-53

5 Graphics and Animations

(Continued)

attribute
name

possible
values/example meaning default

browser
entry

TicksDistancepositive real value distance
between
labeled
ticks along
all axes

CS2d/3d

XTicksDistancepositive real value distance
between
labeled
ticks along
the x axis

CS2d/3d

YTicksDistancepositive real value distance
between
labeled
ticks along
the y axis

CS2d/3d

ZTicksDistancepositive real value distance
between
labeled
ticks along
the z axis

CS3d

TicksAnchor real value the
position of
a labeled
tick to
start with

0 CS2d/3d

XTicksAnchorreal value the
position of
a labeled
tick to
start with

0 CS2d/3d

5-54

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/example meaning default

browser
entry

YTicksAnchorreal value the
position of
a labeled
tick to
start with

0 CS2d/3d

ZTicksAnchorreal value the
position of
a labeled
tick to
start with

0 CS3d

TicksNumberNone, Low, Normal, High number
of labeled
ticks along
all axes

Normal CS2d/3d

XTicksNumberNone, Low, Normal, High number
of labeled
ticks along
the x axis

Normal CS2d/3d

YTicksNumberNone, Low, Normal, High number
of labeled
ticks along
the y axis

Normal CS2d/3d

ZTicksNumberNone, Low, Normal, High number
of labeled
ticks along
the z axis

Normal CS3d

5-55

5 Graphics and Animations

(Continued)

attribute
name

possible
values/example meaning default

browser
entry

TicksBetweeninteger ≥ 0 number
of smaller
unlabeled
ticks
between
labeled
ticks along
all axes

1 CS2d/3d

XTicksBetweeninteger ≥ 0 number
of smaller
unlabeled
ticks
between
labeled
ticks along
the x axis

1 CS2d/3d

YTicksBetweeninteger ≥ 0 number
of smaller
unlabeled
ticks
between
labeled
ticks along
the y axis

1 CS2d/3d

ZTicksBetweeninteger ≥ 0 number
of smaller
unlabeled
ticks
between
labeled
ticks along
the z axis

1 CS3d

5-56

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/example meaning default

browser
entry

TicksLabelStyleDiagonal, Horizontal,
Shifted, Vertical

orientation
and style
of tick
labels
along all
axes

Horizontal CS2d/3d

XTicksLabelStyleDiagonal, Horizontal,
Shifted, Vertical

orientation
and style
of tick
labels
along the
x axes

Horizontal CS2d/3d

YTicksLabelStyleDiagonal, Horizontal,
Shifted, Vertical

orientation
and style
of tick
labels
along the
y axis

Horizontal CS2d/3d

ZTicksLabelStyleDiagonal, Horizontal,
Shifted, Vertical

orientation
and style
of tick
labels
along the
z axis

Horizontal CS3d

TicksAt [tick1, tick2, ...],
where tick.i is a real
value (the position) or
an equation position
= "label string"
(such as 3.14 = "pi")

ticks set
by the
user, valid
for all axes

CS2d/3d

5-57

5 Graphics and Animations

(Continued)

attribute
name

possible
values/example meaning default

browser
entry

XTicksAt see TicksAt ticks along
the x axis
set by the
user

CS2d/3d

YTicksAt see TicksAt ticks along
the y axis
set by the
user

CS2d/3d

ZTicksAt see TicksAt ticks along
the z axis
set by the
user

CS3d

TicksLength 2*unit::mm length of
the tick
marks

2*unit::mm CS2d

TicksLabelFontsee section Fonts font for all
axes titles

sans-serif
8

CS2d/3d

Coordinate grid lines can be drawn in the background of a graphical scene
(corresponding to the rulings of lined paper). They are attached to the tick
marks along the axes. There are grid lines attached to the “major” labeled tick
marks which are referred to as the “Grid.” There are also grid lines associated
with the “minor” unlabeled tick marks set be the attribute TicksBetween.
These “minor” grid lines are referred to as the “Subgrid.” The two kinds of
grid lines can be set independently. In the interactive object browser, you
will find the following attributes under CoordinateSystem2d (CS2d) and
CoordinateSystem3d (CS3d), respectively:

5-58

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

GridVisible TRUE, FALSE visibility of
“major” grid
lines in all
directions

FALSE CS2d/3d

SubgridVisibleTRUE, FALSE visibility of
“minor” grid
lines in all
directions

FALSE CS2d/3d

XGridVisible TRUE, FALSE visibility
of “major”
grid lines in
x direction

FALSE CS2d/3d

XSubgridVisibleTRUE, FALSE visibility
of “minor”
grid lines in
x direction

FALSE CS2d/3d

YGridVisible TRUE, FALSE visibility
of “major”
grid lines in
y direction

FALSE CS2d/3d

YSubgridVisibleTRUE, FALSE visibility
of “minor”
grid lines in
y direction

FALSE CS2d/3d

ZGridVisible TRUE, FALSE visibility
of “major”
grid lines in
z direction

FALSE CS3d

ZSubgridVisibleTRUE, FALSE visibility
of “minor”
grid lines in
z direction

FALSE CS3d

5-59

5 Graphics and Animations

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

GridLineColorRGB color color of all
“major” grid
lines

RGB::Grey75 CS2d/3d

SubgridLineColorRGB color color of all
“minor” grid
lines

RGB::Grey CS2d/3d

GridLineWidth0.1*unit::mm width of all
“major” grid
lines

0.1*unit::mmCS2d/3d

SubgridLineWidth0.1*unit::mm width of all
“minor” grid
lines

0.1*unit::mmCS2d/3d

GridLineStyleDashed,
Dotted, Solid

drawing style
of all “major”
grid lines

Solid CS2d/3d

SubgridLineStyleDashed,
Dotted, Solid

drawing style
of all “minor”
grid lines

Solid CS2d/3d

GridInFront TRUE, FALSE grid lines in
front of all
objects?

FALSE CS2d

Animations require that plotting ranges x = xmin..xmax (and y =
ymin..ymax) are fully specified in plotfunc2d (or plotfunc3d, respectively).
Animations are triggered by passing an additional range such as a =
amin..amax to plotfunc2d/plotfunc3d. The animation parameter a may turn
up in the expression of the functions that are to be plotted as well as in
various other places such as the coordinates of titles etc. See section Graphics
and Animations for details.

5-60

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

Frames integer ≥ 0 number of
frames of the
animation

50 Function2d/3d

ParameterNamesymbolic name name of the
animation
parameter

Function2d/3d

ParameterRangeamin..amax range of the
animation
parameter

Function2d/3d

ParameterBeginamin: real
value

lowest value of
the animation
parameter

Function2d/3d

ParameterEndamax: real
value

highest value of
the animation
parameter

Function2d/3d

TimeRange start..end physical time
range for the
animation

0..10 Function2d/3d

TimeBegin start: real
value

physical time
when the
animation
begins

0 Function2d/3d

TimeEnd end: real value physical time
when the
animation ends

10 Function2d/3d

VisibleBefore real value physical time
when the
object becomes
invisible

Function2d/3d

5-61

5 Graphics and Animations

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

VisibleAfter real value physical time
when the object
becomes visible

Function2d/3d

VisibleFromTorange of real
values

physical time
range when the
object is visible

Function2d/3d

VisibleBeforeBeginTRUE, FALSE visible before
animation
begins?

TRUE Function2d/3d

VisibleAfterEndTRUE, FALSE visible after
animation
ends?

TRUE Function2d/3d

Functions are plotted as polygons consisting of straight line segments between
points of the “numerical mesh.” The number of points in this numerical mesh
are set by various “mesh” attributes:

attribute
name

possible
values/examplemeaning default

browser
entry

Mesh integer ≥ 2 number of
“major” mesh
points in
x direction. The
same as XMesh.

121 Function2d

Mesh [integer ≥ 2,
integer ≥ 2]

number of
“major” mesh
points in x and
y direction.
Corresponds to
XMesh, YMesh.

[25,25] Function3d

5-62

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

Submesh integer ≥ 0 number of
“minor” mesh
points between
the “major” mesh
points set by
Mesh. The same
as XSubmesh.

0 Function2d

Submesh [integer ≥ 0,
integer ≥ 0]

number of
“minor” mesh
points between
the “major”
mesh points
set by Mesh.
Corresponds
to XSubmesh,
YSubmesh.

[0, 0] Function3d

XMesh integer ≥ 2 number of
“major” mesh
points in the
x direction

121 Function2d

XMesh integer ≥ 2 number of
“major” mesh
points in the
x direction

25 Function3d

XSubmesh integer ≥ 0 number of
“minor” mesh
points between
the “major” mesh
points set by
XMesh

0 Function2d/3d

5-63

5 Graphics and Animations

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

YMesh integer ≥ 2 number of
“major” mesh
points in the
y direction

121 Function2d

YMesh integer ≥ 2 number of
“major” mesh
points in the
y direction

25 Function3d

YSubmesh integer ≥ 0 number of
“minor” mesh
points between
the “major” mesh
points set by
YMesh

0 Function3d

AdaptiveMeshinteger ≥ 0 depth of the
adaptive mesh

2 Function2d

AdaptiveMeshinteger ≥ 0 depth of the
adaptive mesh

0 Function3d

In 2D pictures generated by plotfunc2d, singularities of a function
are indicated by vertical lines (“vertical asymptotes”), unless
DiscontinuitySearch = FALSE is set. Here is a table with the attributes for
setting the style of the vertical asymptotes:

attribute
name

possible
values/examplemeaning default

browser
entry

VerticalAsymptotesVisibleTRUE, FALSE visibility TRUE Function2d

VerticalAsymptotesColorRGB color color RGB::Grey50 Function2d

5-64

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

VerticalAsymptotesStyleDashed,
Dotted, Solid

drawing
style

Dashed Function2d

VerticalAsymptotesWidth0.2*unit::mm physical
width

0.2*unit::mm Function2d

The colors of the functions plotted by plotfunc2d are chosen automatically.
The property inspector (see section Viewer, Browser, and Inspector:
Interactive Manipulation) allows to change these attributes:

attribute
name

possible
values/examplemeaning default

browser
entry

LinesVisibleTRUE, FALSE visibility of lines (switch this function on/off) TRUEFunction2d

LineWidth0.2*unit::mm physical line width 0.2*unit::mmFunction2d

LineColorRGB color color Function2d

LineColor2RGB color Function2d

LineStyleDashed,
Dotted, Solid

drawing style of line objects SolidFunction2d

LineColorTypeDichromatic,
Flat,
Functional,
Monochrome,
Rainbow

color scheme for lines FlatFunction2d

LineColorFunctionprocedure user defined coloring Function2d

Setting LinesVisible = FALSE and PointsVisible = TRUE, the functions
plotted by plotfunc2d will not be displayed as polygons but as sequences of
points. Here is a table of the attributes to set the presentation style of points:

5-65

5 Graphics and Animations

(Continued)

attribute
name

possible
values/example meaning default

browser
entry

PointsVisible TRUE, FALSE visibility of
points

FALSE Function2d

PointSize 1.5*unit::mm physical size
of points

1.5*unit::mmFunction2d

PointStyle Circles,
Crosses,
Diamonds,
FilledCircles,
FilledDiamonds,
FilledSquares,
Squares, Stars,
XCrosses

presentation
style of
points

FilledCirclesFunction2d

The colors and surface styles of the functions plotted by plotfunc3d are chosen
automatically. The property inspector (see section Viewer, Browser, and
Inspector: Interactive Manipulation) allows to the change these attributes:

attribute
name

possible
values/examplemeaning default

browser
entry

Filled TRUE, FALSE display as a
surface or as
a wireframe
model?

TRUE Function3d

FillColor RGB or RGBa
color

main color (for
flat coloring)

Function3d

FillColor2 RGB or RGBa
color

secondary
color (for
Dichromatic
and
Monochrome
coloring)

Function3d

5-66

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

FillColorType Dichromatic,
Flat,
Functional,
Monochrome,
Rainbow

color scheme Dichromatic Function3d

FillColorFunctionprocedure user defined
coloring

Function3d

Shading Smooth, Flat smooth or flat
shading?

Smooth Function3d

XLinesVisible TRUE, FALSE visibility of
x parameter
lines

TRUE Function3d

YLinesVisible TRUE, FALSE visibility of
y parameter
lines

TRUE Function3d

MeshVisible TRUE, FALSE visibility of
the internal
triangulation

FALSE Function3d

LineWidth 0.35*unit::mm physical line
width

0.35*unit::mmFunction3d

LineColor RGB or RGBa
color

color of
parameter
lines

RGB::Black.[0.25]Function3d

Besides the usual linear plots, logarithmic plots are also possible by choosing
an appropriate CoordinateType.

With Scaling = Constrained, the unit box in model coordinates (a square in
2D, a cube in 3D) is displayed as a unit box. With Scaling = Unconstrained,
the renderer applies different scaling transformation in the coordinate
directions to obtain an optimal fit of the picture in the display window. This,

5-67

5 Graphics and Animations

however, may distort a circle to an ellipse. With Scaling = Constrained a
2D circle appears on the screen like a circle, a 3D sphere appears like a sphere.

2D functions are preprocessed by a semi-symbolic search for discontinuities
to improve the graphical representation near singularities and to avoid
graphical artifacts. If continuous functions are plotted, one may gain some
speed up by switching off this search with DiscontinuitySearch = FALSE.

When very time consuming plots are to be created, it may be useful to create
the plots in “batch mode.” With the attribute OutputFile = filename, the
graphical output is not rendered to the screen. An external file with the
specified name containing the graphical data is created instead. It may
contain xml data that may be viewed later by opening the file with the
MuPAD graphics tool ‘VCam.’ Alternatively, bitmap files in various standard
bitmap formats such as bmp, jpg etc. can be created that may be viewed by
other standard tools. See section Batch Mode for further details.

attribute
name

possible
values/examplemeaning default

browser
entry

CoordinateTypeLinLin,
LinLog,
LogLin,
LogLog

linear-linear,
linear-logarithmic,
logarithmic-linear,
log-log

LinLin Coord.Sys.2d

CoordinateTypeLinLinLin,
...,
LogLogLog

linear-linear-linear,
…,
log-log-log

LinLinLin Coord.Sys.3d

Scaling Automatic,
Constrained,
Unconstrained

scaling
mode

UnconstrainedCoord.Sys.2d/3d

YXRatio positive real
value

aspect ratio
y : x
(only for
Scaling =
Unconstrained)

1 Scene2d/3d

5-68

Easy Plotting: Graphs of Functions

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

ZXRatio positive real
value

aspect ratio
z : x
(only for
Scaling =
Unconstrained)

2/3 Scene3d

DiscontinuitySearchTRUE, FALSE enable/disable
semi-symbolic
search for
discontinuities

TRUE Function2d

OutputFile string save the
plot data in
a file

5-69

5 Graphics and Animations

Advanced Plotting: Principles and First Examples

In this section...

“General Principles” on page 5-70

“Some Examples” on page 5-75

In the previous section, we introduced plotfunc2d and plotfunc3d that serve
for plotting functions in 2D and 3D with simple calls in easy syntax. Although
all plot attributes accepted by function graphs (of type plot::Function2d
or plot::Function3d, respectively) are also accepted by plotfunc2d/3d,
there remains a serious restriction: the attributes are used for all functions
simultaneously.

If attributes are to be applied to functions individually, one needs to invoke a
(slightly) more elaborate calling syntax to generate the plot:
plot(plot::Function2d(f1, x1 = a1..b1, attrib11, attrib12, ...),
plot::Function2d(f2, x2 = a2..b2, attrib21, attrib22, ...), ...):In this call, each
call of plot::Function2d creates a separate object that represents the graph
of the function passed as the first argument over the plotting range passed
as the second argument. An arbitrary number of plot attributes can be
associated with each function graph. The objects themselves are not displayed
directly. The plot command triggers the evaluation of the functions on some
suitable numerical mesh and calls the renderer to display these numerical
data in the form specified by the given attributes.

In fact, plotfunc2d and plotfunc3d do precisely the same: Internally, they
generate plot objects of type plot::Function2d or plot::Function3d,
respectively, and call the renderer via plot.

General Principles
In general, graphical scenes are collections of “graphical primitives.” There
are simple primitives such as points, line segments, polygons, rectangles and
boxes, circles and spheres, histogram plots, pie charts etc. An example of a
more advanced primitive is plot::VectorField2d that represents a collection
of arrows attached to a regular mesh visualizing a vector field over a
rectangular region in 2. Yet more advanced primitives are function graphs and
parametrized curves that come equipped with some internal intelligence, e.g.,

5-70

Advanced Plotting: Principles and First Examples

knowing how to evaluate themselves numerically on adaptive meshes and
how to clip themselves in case of singularities. The most advanced primitives
in the present plot library are plot::Ode2d, plot::Ode3d and plot::Implicit2d,
plot::Implicit3d. The first automatically solve systems of ordinary differential
equations numerically and display the solutions graphically. The latter
display the solution curves or surfaces of algebraic equations f(x, y) = 0 or f(x,
y, z) = 0, respectively, by solving these equation numerically.

All these primitives are just “objects” representing some graphical entities.
They are not rendered directly when they are created, but just serve as data
structures encoding the graphical meaning, collecting attributes defining the
presentation style and providing numerical routines to convert the input
parameters to some numerical data that are to be sent to the renderer.

An arbitrary number of such primitives can be collected to form a graphical
scene. Finally, a call to plot passing a sequence of all primitives in the scene
invokes the renderer to draw the plot. The following example shows the
graph of the function f(x) = xsin(x). At the point (x0, f(x0)), a graphical point is
inserted and the tangent to the graph through this point is added:
f := x -> x*sin(x): x0 := 1.2: dx := 1: g := plot::Function2d(f(x), x = 0..2*PI): p :=
plot::Point2d(x0, f(x0)): t := plot::Line2d([x0 - dx, f(x0) - f’(x0)*dx], [x0 + dx,
f(x0) + f’(x0)*dx]):The picture is drawn by calling plot:
plot(g, p, t):

5-71

5 Graphics and Animations

Each primitive accepts a variety of plot attributes that may be passed as a
sequence of equations AttributeName = AttributeValue to the generating
call. Most prominently, each primitive allows to set the color explicitly:
g := plot::Function2d(f(x), x = 0..2*PI, Color = RGB::Blue):Alternatively, the
generated objects allow to set attributes via slot assignments of the form
primitive::AttributeName := AttributeValue as in
p::Color := RGB::Black: p::PointSize := 3.0*unit::mm: t::Color := RGB::Red:
t::LineWidth := 1.0*unit::mm:The help page of each primitive provides a list
of all attributes the primitive is reacting to.

Certain attributes such as axes style, the visibility of grid lines in the
background etc. are associated with the whole scene rather than with the
individual primitives. These attributes may be included in the plot call:
plot(g, p, t, GridVisible = TRUE):

As explained in detail in section The Full Picture: Graphical Trees, the plot
command automatically embeds the graphical primitives in a coordinate
system, which in turn is embedded in a graphical scene, which is drawn inside
a canvas. The various attributes associated with the general appearance of the
whole picture are associated with these “grouping structures”: a concise list of
all such attributes is provided on the help pages of plot::Canvas, plot::Scene2d,
plot::Scene3d, plot::CoordinateSystem2d, and plot::CoordinateSystem3d,
respectively.

5-72

Advanced Plotting: Principles and First Examples

The object browser provided by the MuPAD graphics tool allows to select each
primitive in the plot. After selection, the attributes of the primitive can be
changed interactively in the property inspector (see section Viewer, Browser,
and Inspector: Interactive Manipulation).

Next, we wish to demonstrate a animation. It is remarkably simple to
generate an animated picture. We want to let the point x0 at which the tangent
is added move along the graph of the function. In MuPAD, you do not need
to create an animation frame by frame. Instead, each primitive can be told
to animate itself by simply defining it with a symbolic animation parameter
and adding an animation range for this parameter. Static and animated
objects can be mixed and rendered together. The static function graph of f(x)
used in the previous plot is recycled for the animation. The graphical point
at (x0, f(x0)) and the tangent through this point shall be animated using the
coordinate x0 as the animation parameter. Deleting its value set above, we
can use the same definitions as before, now with a symbolic x0. We just have
to add the range specification x0 = 0..2*PI for this parameter:
delete x0: dx := 2/sqrt(1 + f’(x0)^2): p := plot::Point2d(x0, f(x0), x0 = 0..2*PI,
Color = RGB::Black, PointSize = 2.0*unit::mm): t := plot::Line2d([x0 - dx,
f(x0) - f’(x0)*dx], [x0 + dx, f(x0) + f’(x0)*dx], x0 = 0..2*PI, Color = RGB::Red,
LineWidth = 1.0*unit::mm): plot(g, p, t, GridVisible = TRUE):

Details on animations and further examples are provided in section Graphics
and Animations.

5-73

5 Graphics and Animations

We summarize the construction principles for graphics with the MuPAD plot
library:

Note Graphical scenes are built from graphical primitives. Section Graphics
and Animations provides a survey of the primitives that are available in the
plot library.

Note Primitives generated by the plot library are symbolic objects that
are not rendered directly. The call plot(Primitive1, Primitive2, ...)
generates the pictures.

Note Graphical attributes are specified as equations AttributeName =
AttributeValue. Attributes for a graphical primitive may be passed in the
call that generates the primitive. The help page of each primitive provides a
complete list of all attributes the primitive reacts to.

Note Attributes determining the general appearance of the picture may
be passed in the plot call. The help pages of plot::Canvas, plot::Scene2d,
plot::Scene3d, plot::CoordinateSystem2d, and plot::CoordinateSystem3d,
respectively, provide a complete list of all attributes determining the general
appearance.

Note All attributes can be changed interactively in the viewer.

5-74

Advanced Plotting: Principles and First Examples

Note Presently, 2D and 3D plots are strictly separated. Objects of different
dimension cannot be rendered in the same plot.

Note Animations are not created frame by frame but objectwise (also see
section Frame by Frame Animations). An object is animated by generating
it with a symbolic animation parameter and providing a range for this
parameter in the generating call. Section Graphics and Animations provides
for further details on animations.

Presently, it is not possible to add objects to an existing plot. However, using
animations, it is possible to let primitives appear one after another in the
animated picture. See Graphics and Animations.

Some Examples

Example 1
We wish to visualize the interpolation of a discrete data sample by cubic
splines. First, we define the data sample, consisting of a list of points [[x1, y1],
[x2, y2], …]. Suppose they are equidistant sample points from the graph of the

function f(x)=x*e^(-x)*sin(5*x) :
f := x -> x*exp(-x)*sin(5*x): data := [[i/3, f(i/3)] $ i = 0..9]:We use
numeric::cubicSpline to define the cubic spline interpolant through these data:
S := numeric::cubicSpline(op(data)):The plot shall consist of the function f(x)
that provides the data of the sample points and of the spline interpolant S(x).
The graphs of f(x) and S(x) are generated via plot::Function2d. The data
points are plotted as a plot::PointList2d:
plot(plot::Function2d(f(x), x = 0..3, Color = RGB::Red, LegendText
= expr2text(f(x))), plot::PointList2d(data, Color = RGB::Black),
plot::Function2d(S(x), x = 0..3, Color = RGB::Blue, LegendText = "spline
interpolant"), GridVisible = TRUE, SubgridVisible = TRUE, LegendVisible =
TRUE):

5-75

5 Graphics and Animations

Example 2
A cycloid is the curve that you get when following a point fixed to a wheel
rolling along a straight line. We visualize this construction by an animation
in which we use the x coordinate of the hub as the animation parameter.
The wheel is realized as a circle. There are 3 points fixed to the wheel: a
green point on the rim, a red point inside the wheel and a blue point outside
the wheel:
WheelRadius := 1: WheelCenter := [x, WheelRadius]: WheelRim :=
plot::Circle2d(WheelRadius, WheelCenter, x = 0..4*PI, LineColor =
RGB::Black): WheelHub := plot::Point2d(WheelCenter, x = 0..4*PI, PointColor
= RGB::Black): WheelSpoke := plot::Line2d(WheelCenter, [WheelCenter[1]
+ 1.5*WheelRadius*sin(x), WheelCenter[2] + 1.5*WheelRadius*cos(x)],
x = 0..4*PI, LineColor = RGB::Black): color:= [RGB::Red, RGB::Green,
RGB::Blue]: r := [1.5*WheelRadius, 1.0*WheelRadius, 0.5*WheelRadius]:
for i from 1 to 3 do Point[i] := plot::Point2d([WheelCenter[1] + r[i]*sin(x),
WheelCenter[2] + r[i]*cos(x)], x = 0..4*PI, PointColor = color[i], PointSize =
2.0*unit::mm): Cycloid[i] := plot::Curve2d([y + r[i]*sin(y), WheelRadius +
r[i]*cos(y)], y = 0..x, x = 0..4*PI, LineColor = color[i]): end_for: plot(WheelRim,
WheelHub, WheelSpoke, Point[i] $ i = 1..3, Cycloid[i] $ i = 1..3, Scaling =
Constrained, Width = 120*unit::mm, Height = 60*unit::mm):

5-76

Advanced Plotting: Principles and First Examples

Example 3
We wish to visualize the solution of the ordinary differential equation (ODE)
y’(x)=-y(x)^3+cos(x) with the initial condition y(0) = 0. The
solution shall be drawn together with the vector field ‘v→‘(x, y)=fenced(1,
-y^3+cos(x)) associated with this ODE (along the
solution curve, the vectors of this field are tangents of the curve). We use
numeric::odesolve2 to generate the solution as a function plot. Since the
numerical integrator returns the result as a list of one floating-point value,
one has to pass the single list entry as Y(x)[1] to plot::Function2d. The
vector field is generated via plot::VectorField2d:
f := (x, y) -> -y^3 + cos(x): Y := numeric::odesolve2(
numeric::ode2vectorfield({y’(x) = f(x, y), y(0) = 0}, [y(x)])): plot(
plot::Function2d(Y(x)[1], x = 0..6, Color = RGB::Red, LineWidth =
0.7*unit::mm), plot::VectorField2d([1, f(x, y)], x = 0..6, y = -1..1, Color =
RGB::Blue, Mesh = [25, 25]), GridVisible = TRUE, SubgridVisible = TRUE,
Axes = Frame):

5-77

5 Graphics and Animations

Example 4
The radius r of an object with rotational symmetry around the x-axis is
measured at various x positions:

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.00

r(x) 0.60 0.58 0.55 0.51 0.46 0.40 0.30 0.15 0.23 0.24 0.20 0.00

A spline interpolation is used to define a smooth function r(x) from the
measurements:
samplepoints := [0.00, 0.60], [0.10, 0.58], [0.20, 0.55], [0.30, 0.51], [0.40, 0.46],
[0.50, 0.40], [0.60, 0.30], [0.70, 0.15], [0.80, 0.23], [0.90, 0.24], [0.95, 0.20],
[1.00, 0.00]: r := numeric::cubicSpline(samplepoints):We reconstruct the object
as a surface of revolution via plot::XRotate. The rotation angle is restricted
to a range that leaves a gap in the surface. The spline curve and the sample
points are added as a plot::Curve3d and a plot::PointList3d, respectively, and
displayed in this gap:
plot(plot::XRotate(r(x), x = 0..1, AngleRange = 0.6*PI..2.4*PI, Color
= RGB::MuPADGold), plot::Curve3d([x, 0, r(x)], x = 0..1, LineWidth
= 0.5*unit::mm, Color = RGB::Black), plot::PointList3d([[p[1], 0, p[2]]
$ p in samplepoints], PointSize = 2.0*unit::mm, Color = RGB::Red),
CameraDirection = [70, -70, 40]):

5-78

Advanced Plotting: Principles and First Examples

Example 5
The following sum is a Fourier representation of a periodic step function:

f(x) = sum(sin((2*k-1) * x)/(2*k-1), k=1..infinity)

We wish to show the convergence of the partial sums

f_n(x) = sum(sin((2*k-1) * x)/(2*k-1), k=1..n)

for some small values of n. To this end, we assign the value of fn(x) to the
MuPAD identifier f_n. For our second and third example, we will need to
accept fractional values of n, so the code uses floor to get a “proper” integer
value for the sum:
// bug-workaround sum(sin((2*k-1)*x)/(2*k-1), k = 1..1):f_n :=
sum(sin((2*k-1)*x)/(2*k-1), k = 1..floor(n))sum(sin(x*(2*k - 1))/(2*k - 1), k
= 1..floor(n))

5-79

5 Graphics and Animations

First, we use plotfunc2d and the sequence operator $ to plot the first 5 partial
sums into the same coordinate system (and switch off the legend, which is not
useful for this application).
plotfunc2d(f_n $ n = 1..5, LegendVisible = FALSE)

This plot clearly shows what is known as Gibbs’ phenomenon: At the
discontinuities of the step function, the approximation “overshoots.” Plotting
more approximations simultaneously is going to create a too crowded plot to
be of use, so to show that using more terms in the sum does not help against
Gibbs’ phenomenon, we revert to animations to show the first 30 partial
sums – this is one of the reasons we used floor(n) above:
plotfunc2d(f_n, x = -5..5, n = 1..30, Frames = 15)

5-80

Advanced Plotting: Principles and First Examples

Another possibility of showing the convergence behavior is to create a
3D plot with the second ordinate being the number of terms used in the
approximation:
plotfunc3d(f_n, x = -5..5, n = 1..30, Submesh = [5,1], FillColorType = Rainbow)

5-81

5 Graphics and Animations

The Full Picture: Graphical Trees
For a full understanding of the interactive features of the viewer to be
discussed in the next section, we need to know the structure of a MuPAD plot
as a “graphical tree.”

The root is the “canvas”; this is the drawing area into which all parts of the
plot are rendered. The type of the canvas object is plot::Canvas. Its physical
size may be specified via the attributes Width and Height.

Inside the canvas, one or more “graphical scenes” can be displayed. All of
them must be of the same dimension, i.e., objects of type plot::Scene2d or
plot::Scene3d, respectively. The following command displays four different
3D scenes. We set the BorderWidth for all objects of type plot::Scene3d to
some positive value so that the drawing areas of the scenes become visible
more clearly:
plot(plot::Canvas(plot::Scene3d(plot::Sphere(1, [0, 0, 0], Color = RGB::Red),
BackgroundStyle = LeftRight), plot::Scene3d(plot::Box(-1..1, -1..1, -1..1, Color
= RGB::Green), BackgroundStyle = TopBottom), plot::Scene3d(plot::Cone(1,
[0, 0, 0], [0, 0, 1], Color = RGB::Blue), BackgroundStyle = Pyramid),
plot::Scene3d(plot::Cone(1, [0, 0, 1], [0, 0, 0], Color = RGB::Orange),
BackgroundStyle = Flat, BackgroundColor = RGB::Grey), Width =
80*unit::mm, Height = 80*unit::mm, Axes = None, BorderWidth =
0.5*unit::mm, plot::Scene3d::BorderWidth = 0.5*unit::mm)):

5-82

The Full Picture: Graphical Trees

See section Layout of Canvas and Scenes for details on how the layout of a
canvas containing several scenes is set.

Coordinate systems of type plot::CoordinateSystem2d or
plot::CoordinateSystem3d exist inside a 2D scene or a 3D scene,
respectively. There may be one or more coordinate systems in a scene. Each
coordinate system has its own axes. In the following example, we place two
coordinate systems in one scene. The first is used to display the sales of apples
in the years 1998 through 2003 in units of 1000 tons, the second is used to
display the sale of cars in units of 10.000 cars. The y-axis for the apples is
“flushed left” by setting the x component of its origin to the first year 1998,
whilst the y-axis for the cars is “flushed right” by setting the x component of
its origin to the last year 2003:
apples := plot::Polygon2d([[1998, 7.4], [1999, 7.8], [2000, 7.7], [2001, 8.3],
[2002, 8.0], [2003, 8.5]], Color = RGB::Red, PointsVisible = TRUE): cars :=
plot::Polygon2d([[1998, 3.2], [1999, 3.5], [2000, 3.7], [2001, 3.7], [2002, 4.0],
[2003, 4.1]], Color = RGB::Blue, PointsVisible = TRUE): plot(plot::Scene2d(
plot::CoordinateSystem2d(apples, ViewingBoxYRange = 0..10, YAxisTitle
= "apples/10^3 tons", Axes = Origin, AxesOriginX = 1998, XTicksNumber
= None, XTicksAt = [$ 1998..2003]), plot::CoordinateSystem2d(cars,
ViewingBoxYRange = 0..5, YAxisTitle = "cars/10^4", Axes = Origin,
AxesOriginX = 2003, XTicksNumber = None, XTicksAt = [$ 1998..2003]))):

5-83

5 Graphics and Animations

Inside the coordinate systems, an arbitrary number of primitives (of the
appropriate dimension) can be displayed. Thus, we always have a canvas,
containing one or more scenes, with each scene containing one or more
coordinate systems. The graphical primitives (or groups of such primitives)
are contained in the coordinate systems. Hence, any MuPAD plot has the
following general structure:

Canvas
|
+-- Scene 1
| |
| +-- CoordinateSystem 1
| | +-- Primitive 1
| | +-- Primitive 2
| | ...
| |
| +-- CoordinateSystem 2
| | +-- Primitive
| | ...
| ...
|
+-- Scene 2
| |
| +-- CoordinateSystem
| | +-- Primitive
| | ...
| ...
...

This is the “graphical tree” that is displayed by the “object browser” of the
MuPAD graphics tool (see section Viewer, Browser, and Inspector: Interactive
Manipulation).

Shortcuts: For simple plots containing primitives inside one coordinate
system only that resides in a single scene of the canvas, it would be rather
cumbersome to generate the picture by a command such as
plot(plot::Canvas(plot::Scene2d(plot::CoordinateSystem2d(Primitive1,
Primitive2, ...)))):In fact, the command

5-84

The Full Picture: Graphical Trees

plot(Primitive1, Primitive2, ...):suffices: It is a shortcut of the above command.
It generates automatically a coordinate system that contains the primitives,
embedded it in a scene which is automatically placed inside a canvas object.
Thus, this command implicitly creates the graphical tree

Canvas
|
+-- Scene 1

|
+-- CoordinateSystem 1

+-- Primitive 1
+-- Primitive 2
...

that becomes visible in the object browser.

5-85

5 Graphics and Animations

Viewer, Browser, and Inspector: Interactive Manipulation
After a plot command is executed in a MuPAD notebook, the plot will typically
appear below the input region, embedded in the notebook. To “activate” the
graphic, click it once with the mouse cursor. The “Tool Bar” at the top of
the window will change and the “Command Bar” at the right side of the
window will be replaced by two sub-windows labelled “Object Browser” and
“Properties”, which we will refer to as the “object browser” and the “property
inspector.” If they are not visible, you may need to activate them with the

icon .

In the object browser, the graphical tree of the plot as introduced in the
preceding section is visible. It allows to select any node of the graphical tree
by a mouse click.

After selecting an object in the object browser, the corresponding part of the
plot is highlighted in some way allowing to identify the selected object visually.
The property inspector now displays all attributes the selected object reacts
to. For example, for an object of type Function2d, the attributes visible in the
property inspector are categorized as ‘Definition,’ ‘Animation,’ ‘Annotation,’
‘Calculation,’ and ‘Style’ with the latter split into the sub-categories (Style
of) ‘Lines,’ (Style of) ‘Points,’ (Style of) ‘Asymptotes.’ Opening one of these
categories, one finds the attributes and their current values that apply to the
currently selected object. After selection of an attribute with the mouse, its
value can be changed:

5-86

Viewer, Browser, and Inspector: Interactive Manipulation

There is a sophisticated way of setting defaults for the attributes via the
object browser and the property inspector. The ‘View’ menu provides an item
‘Hide Defaults.’ Disabling ‘Hide Defaults,’ the object browser changes from

5-87

5 Graphics and Animations

to:

5-88

Viewer, Browser, and Inspector: Interactive Manipulation

At each node of the graphical tree, default values for the attributes can be
set via the property inspector. These defaults are valid for all primitives
that exist below this node, unless these defaults are redefined at some other
node further down in tree hierarchy.

5-89

5 Graphics and Animations

This mechanism is particularly useful when there are many primitives of the
same kind in the plot. Imagine a picture consisting of 1000 points. If you
wish to change the color of all points to green, it would be quite cumbersome
to set PointColor = RGB::Green in all 1000 points. Instead, you can set
PointColor = RGB::Green in the PointColor defaults entry at some tree
node that contains all the points (e.g., the canvas). Similarly, if there are 1000
points in one scene and another 1000 points in a second scene, you can change
the color of all points in the first scene by an appropriate default entry in
the first scene, whilst the default entry for the second scene can be set to a
different value.

A 3D plot can be rotated and shifted by the mouse. Also zooming in and out is
possible. In fact, these operations are realized by moving the camera around,
closer to, or farther away from the scene, respectively. There is a camera
control that may be switched on and off via the ‘Camera Control’ item of the
‘View’ menu. It provides the current viewing parameters such as camera
position, focal point and the angle of the camera lens:

5-90

Viewer, Browser, and Inspector: Interactive Manipulation

Section Attributes for plotfunc2d and plotfunc3d provides more information
on cameras.

5-91

5 Graphics and Animations

Primitives
In this section, we give a brief survey of the graphical primitives, grouping
constructs, transformation routines etc. provided by the plot library.

The following table lists the ‘low-level’ primitives:

plot library

plot::Arc2d circular arc in 2D

plot::Arrow2d arrow in 2D

plot::Arrow3d arrow in 3D

plot::Box rectangular box in 3D

plot::Circle2d circle in 2D

plot::Circle3d circle in 3D

plot::Cone cone/conical frustum in 3D

plot::Cylinder cylinder in 3D

plot::Ellipse2d ellipse in 2D

plot::Ellipsoid ellipsoid in 3D

plot::Line2d graphical line segment in 2D

plot::Line3d graphical line segment in 3D

plot::Parallelogram2d parallelogram in 2D

plot::Parallelogram3d parallelogram in 3D

plot::Point2d graphical point in 2D

plot::Point3d graphical point in 3D

plot::PointList2d collection of graphical points in 2D

plot::PointList3d collection of graphical points in 3D

plot::Polygon2d line segments forming a polygon in
2D

5-92

Primitives

plot library (Continued)

plot::Polygon3d line segments forming a polygon in
3D

plot::Rectangle rectangle in 2D

plot::Sphere sphere in 3D

plot::SurfaceSet surfaces in 3D (as a collection of 3D
triangles)

plot::SurfaceSTL import of 3D stl surfaces

plot::Text2d text object in 2D

plot::Text3d text object in 3D

In addition, there are primitives for Plato’s regular polyhedra:

plot::Tetrahedron

plot::Hexahedron

plot::Octahedron

plot::Dodecahedron

plot::Icosahedron.

The following table lists the ‘high-level’ primitives and ‘special purpose’
primitives:

plot library

plot::Bars2d (statistical) data plot in 2D

plot::Bars3d (statistical) data plot in 3D

plot::Boxplot (statistical) box plot

plot::Conformal conformal plot of complex functions

5-93

5 Graphics and Animations

plot library (Continued)

plot::Curve2d parametrized curve in 2D

plot::Curve3d parametrized curve in 3D

plot::Density density plot in 2D

plot::Function2d function graph in 2D

plot::Function3d function graph in 3D

plot::Hatch hatched region in 2D

plot::Histogram2d (statistical) histogram plot in 2D

plot::Implicit2d plot of implicitly defined curves in
2D

plot::Implicit3d plot of implicitly defined surfaces in
3D

plot::Inequality visualization of inequalities in 2D

plot::Integral visualization of integration

plot::Iteration visualization of iterations in 2D

plot::Listplot lists of points in 2D

plot::Lsys Lindenmayer system in 2D

plot::Matrixplot visualization of matrix data as a
surface in 3D

plot::MuPADCube the MuPAD logo

plot::Ode2d graphical solution of an ODE in 2D

plot::Ode3d graphical solution of an ODE in 3D

plot::Piechart2d (statistical) pie chart in 2D

plot::Piechart3d (statistical) pie chart in 3D

plot::Plane infinite plane in 3D

plot::Raster raster and bitmap plots in 2D

plot::Scatterplot (statistical) scatter plot in 2D

5-94

Primitives

plot library (Continued)

plot::Sequence visualization of a sequence of
numbers

plot::SparseMatrixplot sparsity pattern of a matrix

plot::Sum visualization of a sum of numbers

plot::Surface parametrized surface in 3D

plot::Sweep sweep surface in 3D

plot::Turtle turtle plot in 2D

plot::VectorField2d vector field plot in 2D

plot::VectorField3d vector field plot in 3D

plot::XRotate surface of revolution in 3D

plot::ZRotate surface of revolution in 3D

The following table lists the various light sources available to illuminate
3D plots:

plot library

plot::AmbientLight ambient (undirected) light

plot::DistantLight directed light

plot::PointLight (undirected) point light

plot::SpotLight (directed) spot light

The following table lists various grouping constructs:

5-95

5 Graphics and Animations

plot library

plot::Canvas drawing area, container for 2D or 3D
scenes

plot::Scene2d container for 2D coordinate systems

plot::Scene3d container for 3D coordinate systems

plot::CoordinateSystem2d container for 2D primitives and
plot::Group2d

plot::CoordinateSystem3d container for 3D primitives and
plot::Group3d

plot::Group2d group of primitives in 2D

plot::Group3d group of primitives in 3D

Primitives or groups of primitives can be transformed by the following
routines:

plot library

plot::Scale2d scaling transformation in 2D

plot::Scale3d scaling transformation in 3D

plot::Reflect2d reflection in 2D

plot::Reflect3d reflection in 3D

plot::Rotate2d rotation in 2D

plot::Rotate3d rotation in 3D

plot::Translate2d translation in 2D

plot::Translate3d translation in 3D

plot::Transform2d general linear transformation in 2D

plot::Transform3d general linear transformation in 3D

The following special plot routines are provided:

5-96

Primitives

(Continued)

plot::Cylindrical cylindrical plot in 3D

plot::Polar polar plot in 2D

plot::Spherical polar plot in 3D

plot::Tube tube plot in 3D

Additionally, there are:

plot::Camera camera in 3D

plot::ClippingBox clipping box in 3D

5-97

5 Graphics and Animations

Attributes

In this section...

“Default Values” on page 5-99

“Inheritance of Attributes” on page 5-100

“Primitives Requesting Special Scene Attributes: “Hints”” on page 5-105

“The Help Pages of Attributes” on page 5-107

The plot library provides for more than 400 attributes for fine-tuning of the
graphical output. Because of this large number, the attributes are grouped
into various categories in the object browser (see section Viewer, Browser, and
Inspector: Interactive Manipulation) and the documentation:

category meaning

Animation parameters relevant for animations

Annotation footer, header, titles, and legends

Axes axes style and axes titles

Cameras cameras in 3D

Lights lights in 3D

Calculation numerical evaluation (mesh
parameters)

Definition parameters that change the object
itself

Grid Lines grid lines in the background (rulings)

Layout layout parameters for canvas and
scenes

Style parameters that do not change
the objects but their presentation
(visibility, color, line width, point
size etc.)

Arrow Style style parameters for arrows

Line Style style parameters for line objects

5-98

Attributes

Point Style style parameters for point objects

Surface Style style parameters for surface objects
in 3D and filled areas in 2D

Tick Marks axes tick marks: style and labels

On the help page for each primitive, there is a complete list of all attributes
the primitive reacts to. Clicking on an attribute, you are lead to the help
page for this attribute which provides for all the necessary information
concerning its semantics and admissible values. The examples on the help
page demonstrate the typical use of the attribute.

Default Values
Most attributes have a default value that is used if no value is specified
explicitly. As an example, we consider the attribute LinesVisible
that is used by several primitives such as plot::Box, plot::Circle2d,
plot::Cone, plot::Curve2d, plot::Raster etc. Although they all use the
same attribute named LinesVisible, its default value differs among the
different primitive types. The specific defaults are accessible by the slots
plot::Box::LinesVisible, plot::Circle2d::LinesVisible etc.:
plot::getDefault(plot::Box::LinesVisible),
plot::getDefault(plot::Circle2d::LinesVisible),
plot::getDefault(plot::Cone::LinesVisible),
plot::getDefault(plot::Raster::LinesVisible)TRUE, TRUE, TRUE, FALSE

If any of the default values provided by the MuPAD system do not seem
appropriate for your applications, change these defaults via plot::setDefault:
plot::setDefault(plot::Box::LinesVisible = FALSE)TRUE

(The return value is the previously valid default value.) Several defaults can
be changed simultaneously:
plot::setDefault(plot::Box::LinesVisible = FALSE, plot::Circle2d::LinesVisible
= FALSE, plot::Circle2d::Filled = TRUE)FALSE, TRUE, FALSE

5-99

5 Graphics and Animations

plot::getDefault(plot::Box::LinesVisible)FALSE

Inheritance of Attributes
The setting of default values for attributes is quite sophisticated. Assume that
you have two scenes that are to be displayed in one single canvas. Both scenes
consist of 51 graphical points, each:
points1 := plot::Point2d(i/50*PI, sin(i/50*PI)) $ i = 0..50: points2 :=
plot::Point2d(i/50*PI, cos(i/50*PI)) $ i = 0..50: S1 := plot::Scene2d(points1): S2
:= plot::Scene2d(points2): plot(S1, S2):

If we wish to color all points in both scenes red, we can set a default for the
point color in the plot command:
plot(S1, S2, PointColor = RGB::Red):

5-100

Attributes

If we wish to color all points in the first scene red and all points in the second
scene blue, we can give each of the points the desired color in the generating
call to plot::Point2d. Alternatively, we can set separate defaults for the point
color inside the scenes:
S1 := plot::Scene2d(points1, PointColor = RGB::Red): S2 :=
plot::Scene2d(points2, PointColor = RGB::Blue): plot(S1, S2):

Here is the general rule for setting defaults inside a graphical tree (see The
Full Picture: Graphical Trees):

5-101

5 Graphics and Animations

Note When an attribute is specified in a node of the graphical tree, the
specified value serves as the default value for the attribute for all primitives
that exist in the sub-tree starting from that node.

The default value can be overwritten by another value at each node further
down in the sub-tree (for example, finally, by a specific value in the
primitives). In the following call, the default color ‘red’ is set in the canvas.
This value is accepted and used in the first scene. The second scene sets
the default color ‘blue’ overriding the default value ‘red’ set in the canvas.
Additionally, there is an extra point with a color set explicitly to ‘black.’ This
point ignores the defaults set further up in the tree hierarchy:
extrapoint := plot::Point2d(1.4, 0.5, PointSize = 3*unit::mm,
PointColor = RGB::Black): S1 := plot::Scene2d(points1, extrapoint):
S2 := plot::Scene2d(points2, extrapoint, PointColor = RGB::Blue):
plot(plot::Canvas(S1, S2, PointColor = RGB::Red)):

The following call generates the same result. Note that the plot command
automatically creates a canvas object and passes the attribute PointColor
= RGB::Red to the canvas:
plot(S1, S2, PointColor = RGB::Red):

5-102

Attributes

We note that there are different primitives that react to the same attribute.
We used LinesVisible in the previous section to demonstrate this fact. One of
the rules for inheriting attributes in a graphical tree is:

Note If an attribute such as LinesVisible = TRUE is specified in some node
of the graphical tree, all primitives below this node that react to this attribute
use the specified value as the default value.

If a type specific attribute such as plot::Circle2d::LinesVisible = TRUE
is specified, the new default value is valid only for primitives of that specific
type.

In the following example, we consider 100 randomly placed circles with a
rectangle indicating the area into which all circle centers are placed:
rectangle := plot::Rectangle(0..1, 0 ..1): circles := plot::Circle2d(0.05,
[frandom(), frandom()]) $ i = 1..100: plot(rectangle, circles, Axes = Frame):

5-103

5 Graphics and Animations

We wish to turn the circles into filled circles by Filled = TRUE, LinesVisible
= FALSE:
plot(rectangle, circles, Filled = TRUE, FillPattern = Solid, LinesVisible =
FALSE, Axes = Frame):

This is not quite what we wanted: Not only the circles, but also the rectangle
reacts to the attributes Filled, FillPattern, and LinesVisible. The following
command restricts these attributes to the circles:

5-104

Attributes

plot(rectangle, circles, plot::Circle2d::Filled = TRUE,
plot::Circle2d::FillPattern = Solid, plot::Circle2d::LinesVisible = FALSE,
Axes = Frame):

Primitives Requesting Special Scene Attributes:
“Hints”
The default values for the attributes are chosen in such a way that they
produce reasonable pictures in “typical” plot commands. For example, the
default axes type in 3D scenes is Axes = Boxed because this is the most
appropriate axes type in the majority of 3D plots:
plot::getDefault(plot::CoordinateSystem3d::Axes)Boxed

However, there are exceptions. E.g., a plot containing a 3D pie chart should
probably have no axes at all. Since it is not desirable to use Axes = None as
the default setting for all plots, exceptional primitives such as plot::Piechart3d
are given a chance to override the default axes automatically. In a pie chart
plot, no axes are used by default:
plot(plot::Piechart3d([20, 30, 10, 7, 20, 13], Titles = [1 = "20%", 2 = "30%", 3 =
"10%", 4 = "7%", 5 = "20%", 6 = "13%"])):

5-105

5 Graphics and Animations

Note that Axes is a scene attribute that cannot be processed by pie chart
objects directly. Hence, a separate mechanism for requesting special scene
attributes by primitives is implemented: so-called “hints.”

A “hint” is an attribute of one of the superordinate nodes in the graphical tree,
for example, an attribute of a coordinate system, a scene or the canvas. The
help pages of the primitives give information on what “hints” are sent by the
primitive. If several primitives send conflicting hints, the first “hint” is used.

“Hints” are implemented internally and cannot be switched off by the user.
Note, however, that the “hints” concept only concerns default values for
attributes. You can always specify the attribute explicitly if you think that a
default value or a “hint” is not appropriate. E.g., we explicitly request Axes =
Boxed in the following call:
plot(plot::Piechart3d([20, 30, 10, 7, 20, 13], Titles = [1 = "20%", 2 = "30%", 3 =
"10%", 4 = "7%", 5 = "20%", 6 = "13%"]), Axes = Boxed):

5-106

Attributes

The Help Pages of Attributes
We have a brief look at a typical help page for a plot attribute to explain the
information provided there:

The item “Acceptable Values” states the type of the number n that is
admissible when passing the attributes UMesh = n, VMesh = n etc.

The item “Attribute type: inherited” states that these attributes may not only
be specified in the generating call of graphical primitives. They can also be
specified at higher nodes of a graphical tree to be inherited to the primitives
in the corresponding sub-tree (see section Inheritance of Attributes).

The sections “Object types reacting to UMesh” etc. provide complete listings of
all primitives reacting to the attribute(s) together with the specific default
values.

The “Details” section gives further information on the semantics of the
attribute(s). Finally, there are “Examples” of plot commands using the
described attribute(s).

5-107

5 Graphics and Animations

Layout of Canvas and Scenes

In this section...

“Layout of the Canvas” on page 5-108

“Layout of Scenes” on page 5-116

Layout of the Canvas
The following canvas attributes are relevant for its layout and its style.

attribute name
possible
values/example meaning default

Width 12*unit::cm physical width of
the canvas

120*unit::mm

Height 8*unit::cm physical height
of the canvas

80*unit::mm

BackgroundColor RGB color color of the
background

RGB::White

BorderColor RGB color color of the
border

RGB::Grey50

BorderWidth 1*unit::mm width of the
border

0

Margin 1*unit::mm common width
for all margins:
BottomMargin,
LeftMargin, etc.

1*unit::mm

BottomMargin 1*unit::mm width of the
bottom margin

1*unit::mm

LeftMargin 1*unit::mm width of the left
margin

1*unit::mm

RightMargin 1*unit::mm width of the right
margin

1*unit::mm

5-108

Layout of Canvas and Scenes

attribute name
possible
values/example meaning default

TopMargin 1*unit::mm width of the top
margin

1*unit::mm

Footer string footer text "" (no footer)

Header string header text "" (no header)

FooterAlignment Left, Center,
Right

horizontal footer
alignment

Center

HeaderAlignment Left, Center,
Right

horizontal
header
alignment

Center

FooterFont see section Fonts font for the footer sans-serif 12

HeaderFont see section Fonts font for the
header

sans-serif 12

Layout Tabular,
Horizontal,
Vertical,
Absolute,
Relative

automatic or
user-defined
layout?

Tabular

Rows integer > 0 number of rows
in automatic
tabular layout
mode

Columns integer > 0 number of
columns in
automatic
tabular layout
mode

Spacing 1.0*unit::mm space between
scenes

1.0*unit::mm

A canvas may contain one or more scenes. The following picture shows a
canvas with four scenes to illustrate the meaning of the layout attributes

5-109

5 Graphics and Animations

BorderWidth, BottomMargin, LeftMargin, RightMargin, TopMargin, and
Spacing:
borderwidth := 1.0*unit::mm/(100*unit::mm): // Canvas::BorderWidth margin
:= 0.042: // Canvas::Margin spacing := 0.030: vspacing := 11/9*spacing:
fontsize := 12: // Canvas::FooterFontSize fs := 0.6/fontsize: // space for
Canvas::Header/Footer eps := 0.003: textoptions := VerticalAlignment =
Center: arrowoptions := Color = RGB::Black, TipAngle = PI/3, TipLength
= 1.2*unit::mm, TipStyle = Filled: Scene1 := plot::Scene2d(BorderWidth
= 0.5*unit::mm, BorderColor = RGB::Black, plot::Point2d(0,0, Color =
RGB::White), Header = "Scene 1", Axes = None, HeaderFont = [12], Left =
borderwidth + margin, Width = (1 - 2*borderwidth - 2*margin - spacing)/2,
Bottom = 0.5 + vspacing/2, Height = (1 - 2*borderwidth - 2*margin - 2*fs
- vspacing)/2): Scene2 := plot::Scene2d(BorderWidth = 0.5*unit::mm,
BorderColor = RGB::Black, plot::Point2d(0,0, Color = RGB::White), Header
= "Scene 2", Axes = None, HeaderFont = [12], Left = 0.5 + spacing/2,
Width = (1 - 2*borderwidth - 2*margin - spacing)/2 + eps, Bottom = 0.5
+ vspacing/2, Height = (1 - 2*borderwidth - 2*margin - 2*fs - vspacing)/2
): Scene3 := plot::Scene2d(BorderWidth = 0.5*unit::mm, BorderColor =
RGB::Black, plot::Point2d(0,0, Color = RGB::White), Header = "Scene 3",
Axes = None, HeaderFont = [12], Left = borderwidth + margin, Width = (1
- 2*borderwidth - 2*margin - spacing)/2, Bottom = borderwidth + margin
+ fs, Height = (1 - 2*borderwidth - 2*margin - 2*fs - vspacing)/2): Scene4
:= plot::Scene2d(BorderWidth = 0.5*unit::mm, BorderColor = RGB::Black,
plot::Point2d(0,0, Color = RGB::White), Header = "Scene 4", Axes = None,
HeaderFont = [12], Left = 0.5 + spacing/2, Width = (1 - 2*borderwidth -
2*margin - spacing)/2 + eps, Bottom = borderwidth + margin + fs, Height =
(1 - 2*borderwidth - 2*margin - 2*fs - vspacing)/2): // SCENE provides the
texts and the arrows SCENE := plot::Scene2d(BorderWidth = 0.0*unit::mm,
BackgroundTransparent = TRUE, Margin = 0, Left = 0.0, Bottom = 0.0, Height
= 1.0, Width = 1.0, Axes = None, plot::Rectangle(0..1, 0..1, Visible = FALSE,
Filled = FALSE), plot::Rectangle(borderwidth + margin..1 - borderwidth -
margin, borderwidth + margin..1 - borderwidth - margin, Filled = FALSE,
Color = RGB::Black, LineStyle = Dashed), plot::Text2d("TopMargin",
[0.10, 0.75], textoptions, HorizontalAlignment = Left), plot::Arrow2d([0.16,
0.77], [0.16, 1 - borderwidth - 0.5*margin], arrowoptions),
plot::Text2d("LeftMargin", [0.10, 0.70], textoptions, HorizontalAlignment
= Left), plot::Arrow2d([0.09, 0.70], [borderwidth + 0.5*margin, 0.70],
arrowoptions), plot::Text2d("RightMargin", [0.90, 0.70], textoptions,
HorizontalAlignment = Right), plot::Arrow2d([0.91, 0.70], [1 - borderwidth -
0.5*margin, 0.70], arrowoptions), plot::Text2d("BottomMargin", [0.10, 0.20],

5-110

Layout of Canvas and Scenes

textoptions, HorizontalAlignment = Left), plot::Arrow2d([0.16, 0.18], [0.16,
borderwidth + 0.5*margin], arrowoptions), plot::Text2d("BorderWidth",
[0.10, 0.65], textoptions, HorizontalAlignment = Left), plot::Arrow2d([0.09,
0.65], [borderwidth, 0.65], arrowoptions), plot::Text2d("Spacing", [0.4, 0.6],
textoptions, HorizontalAlignment = Right), plot::Arrow2d([0.41, 0.60], [0.50,
0.60], arrowoptions), plot::Arrow2d([0.35, 0.57], [0.35, 0.50], arrowoptions)
): plot(plot::Canvas(Height = 90*unit::mm, Width = 110*unit::mm, Footer
= "The Canvas Footer", Header = "The Canvas Header", HeaderFont =
[12], FooterFont = [12], Spacing = 2.0*unit::mm, Margin = 3*unit::mm,
BackgroundColor = RGB::Grey, BorderWidth = borderwidth*100*unit::mm,
BorderColor = RGB::SlateGreyDark, Layout = Relative, Scene1, Scene2,
Scene3, Scene4, SCENE)):

The basic attribute that switches between “automatic” and “user-defined”
layout is Layout:

• With the default setting Layout = Tabular, a sequence of scenes in a
canvas is displayed as a graphical array. The number of columns or rows of
this array may be chosen via the attributes Columns or Rows, respectively.
If none of these attributes is specified, the tabular layout scheme chooses
some suitable values automatically.

5-111

5 Graphics and Animations

• The setting Layout = Horizontal places the scenes side by side in a single
row. It is a shortcut for the setting Layout = Tabular, Rows = 1:
plot(plot::Canvas(Height = 40*unit::mm, Width = 60*unit::mm, Footer
= "The Canvas Footer", Header = "The Canvas Header", HeaderFont =
[12], FooterFont = [12], Layout = Tabular, Rows = 1, BackgroundColor
= RGB::Grey, BorderWidth = borderwidth*50*unit::mm, BorderColor =
RGB::SlateGreyDark, Margin = 3*unit::mm, Scene1, Scene2)):

• The setting Layout = Vertical places the scenes one below the other in a
single column. It is a shortcut for the setting Layout = Tabular, Columns
= 1:
Scene3::Header := "Scene 2": plot(plot::Canvas(Height = 60*unit::mm,
Width = 50*unit::mm, Footer = "The Canvas Footer", Header = "The Canvas
Header", HeaderFont = [12], FooterFont = [12], Layout = Tabular, Columns
= 1, Margin = 3*unit::mm, BackgroundColor = RGB::Grey, BorderWidth =
1*unit::mm, BorderColor = RGB::SlateGreyDark, Scene1, Scene3)):

The settings Layout = Absolute and Layout = Relative switch the
automatic layout mode off and allow to position each scene via the scene

5-112

Layout of Canvas and Scenes

attributes Left and Bottom. These attributes determine the position of the
lower left corner of the scene and can be set separately for each scene.

• With Layout = Absolute, the values for the lower left corner of the scene
as well as its width and height may be specified as absolute physical
lengths such as Left = 3.0*unit::mm, Bottom = 4.5*unit::mm, Width =
10*unit::cm, Height = 4*unit::inch.

• With Layout = Relative, these values may be specified as fractions of
the canvas height and width. E.g.,

Layout = Relative,

Left = 0.3, Bottom = 0.2,

Width = 0.5, Height = 0.5

is equivalent to

Layout = Absolute,

Left = 0.3*canvaswidth, Bottom = 0.2*canvasheight,

Width = 0.5*canvaswidth, Height = 0.5*canvasheight,

where canvaswidth and canvasheight are the physical width and height
of the canvas.

The following command uses Layout = Relative to position 3 scenes by
specifying the lower left corner together with their widths and heights as
fractions of the canvas dimensions:
Left1 := 0.1: Bottom1 := 0.06: Width1 := 0.60: Height1 := 0.8:
Left2 := 0.6: Bottom2 := 0.5: Width2 := 0.35: Height2 := 0.45:
Left3 := 0.75: Bottom3 := 0.2: Width3 := 0.22: Height3 := 0.35:
plot(plot::Canvas(BorderWidth = 0.5*unit::mm, BackgroundColor
= RGB::Grey, plot::Scene2d(plot::Rectangle(-1.2..1.2, -1.2..1.2),
Left = Left1, Bottom = Bottom1, Width = Width1, Height =
Height1), plot::Scene2d(plot::Rectangle(-1.2..1.2, -1.2..1.2), Left =
Left2, Bottom = Bottom2, Width = Width2, Height = Height2),
plot::Scene2d(plot::Rectangle(-1.2..1.2, -1.2..1.2), Left = Left3, Bottom =
Bottom3, Width = Width3, Height = Height3), Header = "The Canvas Header",
Layout = Relative, Width = 110*unit::mm, Height = 90*unit::mm)):

5-113

5 Graphics and Animations

In detail:
fontsize := 12: // Canvas::FooterFontSize Left1 := 0.10: Bottom1 :=
0.057: Width1 := 0.60: Height1 := 0.8: Left2 := 0.60: Bottom2 := 0.500:
Width2 := 0.35: Height2 := 0.45: Left3 := 0.75: Bottom3 := 0.200: Width3
:= 0.22: Height3 := 0.35: textoptions := VerticalAlignment= Center:
arrowoptions := Color = RGB::Black, TipAngle = PI/3, TipLength =
1.2*unit::mm, TipStyle = Filled: Scene1 := plot::Scene2d(BorderWidth
= 0.5*unit::mm, BorderColor = RGB::Black, plot::Point2d(0,0, Color =
RGB::White), Header = "Scene 1", Axes = None, HeaderFont = [fontsize],
Left = Left1, Bottom = Bottom1, Width = Width1, Height = Height1
): Scene2 := plot::Scene2d(BorderWidth = 0.5*unit::mm, BorderColor =
RGB::Black, plot::Point2d(0,0, Color = RGB::White), Header = "Scene 2",
Axes = None, HeaderFont = [fontsize], Left = Left2, Bottom = Bottom2,
Width = Width2, Height = Height2): Scene3 := plot::Scene2d(BorderWidth
= 0.5*unit::mm, BorderColor = RGB::Black, plot::Point2d(0,0, Color =
RGB::White), Header = "Scene 3", Axes = None, HeaderFont = [fontsize], Left
= Left3, Bottom = Bottom3, Width = Width3, Height = Height3): // SCENE
provides the texts and the arrows SCENE := plot::Scene2d(BorderWidth =
0.0*unit::mm, BackgroundTransparent = TRUE, Margin = 0, Left = 0.0,
Bottom = 0.0, Height = 1.0, Width = 1.0, Axes = None, plot::Rectangle(0..1,
0..1, Visible = FALSE, Filled = FALSE), plot::Text2d("Left 1", [0.055,
0.057], VerticalAlignment = Bottom, HorizontalAlignment = Center),
plot::Arrow2d([0.05, 0.057], [0.005, 0.057], arrowoptions), plot::Arrow2d([0.05,

5-114

Layout of Canvas and Scenes

0.057], [0.095, 0.057], arrowoptions), plot::Text2d("Bottom 1", [0.110,
0.028], VerticalAlignment = Center, HorizontalAlignment = Left),
plot::Arrow2d([0.10, 0.025], [0.10 , 0.057], arrowoptions), plot::Arrow2d([0.10,
0.025], [0.10 , 0.005], arrowoptions), plot::Text2d("Left 2", [0.30, 0.5],
VerticalAlignment = Top, HorizontalAlignment = Left), plot::Arrow2d([0.3,
0.5], [0.005, 0.5], arrowoptions), plot::Arrow2d([0.3, 0.5], [0.595, 0.5],
arrowoptions), plot::Text2d("Bottom 2", [0.59, 0.25], VerticalAlignment
= Center, HorizontalAlignment = Right), plot::Arrow2d([0.6, 0.25],
[0.6 , 0.495], arrowoptions), plot::Arrow2d([0.6, 0.25], [0.6 , 0.005],
arrowoptions), plot::Text2d("Left 3", [0.40, 0.2], VerticalAlignment =
Top, HorizontalAlignment = Left), plot::Arrow2d([0.4, 0.2], [0.005,
0.2], arrowoptions), plot::Arrow2d([0.4, 0.2], [0.745, 0.2], arrowoptions),
plot::Text2d("Bottom 3", [0.76, 0.1], VerticalAlignment = Center,
HorizontalAlignment = Left), plot::Arrow2d([0.75, 0.1], [0.75 , 0.195],
arrowoptions), plot::Arrow2d([0.75, 0.1], [0.75 , 0.005], arrowoptions),
null()): plot(plot::Canvas(Height = 90*unit::mm, Width = 110*unit::mm,
Header = "The Canvas Header", HeaderFont = [fontsize], FooterFont =
[fontsize], Layout = Relative, BackgroundColor = RGB::Grey, BorderWidth =
0.5*unit::mm, BorderColor = RGB::SlateGreyDark, Scene1, Scene2, Scene3,
SCENE)):

5-115

5 Graphics and Animations

Layout of Scenes
The following scene attributes are relevant for the layout and the style of
a scene:

Layout and style parameters for scenes

attribute name
possible
values/example meaning default

Width 0.8,
12*unit::cm

width of the
scene (relative or
absolute value)

automatic

Height 0.8, 8*unit::cm height of the
scene (relative or
absolute value)

automatic

BackgroundColor RGB color color of the
background

RGB::White

BackgroundColor2 RGB color secondary color
for color blend
(3D only)

RGB::Grey75

BackgroundStyle Flat, LeftRight,
Pyramid,
TopBottom

style of color
blend (3D only)

FLAT

BackgroundTransparentTRUE, FALSE background
transparent or
opaque?

FALSE

BorderColor RGB color color of the
border

RGB::SlateGrey

BorderWidth 1*unit::mm width of the
border

0

Margin 1*unit::mm common width
for all margins:
BottomMargin,
LeftMargin, etc.

1*unit::mm

BottomMargin 1*unit::mm width of the
bottom margin

1*unit::mm

5-116

Layout of Canvas and Scenes

Layout and style parameters for scenes (Continued)

attribute name
possible
values/example meaning default

LeftMargin 1*unit::mm width of the left
margin

1*unit::mm

RightMargin 1*unit::mm width of the right
margin

1*unit::mm

TopMargin 1*unit::mm width of the top
margin

1*unit::mm

Footer string footer text "" (no footer)

Header string header text "" (no header)

FooterAlignment Left, Center,
Right

horizontal footer
alignment

Center

HeaderAlignment Left, Center,
Right

horizontal
header
alignment

Center

FooterFont see section Fonts font for the footer sans-serif 12

HeaderFont see section Fonts font for the
header

sans-serif 12

LegendVisible TRUE, FALSE legend on/off FALSE

LegendAlignment Center, Left,
Right

horizontal legend
alignment

Center

LegendPlacement Bottom, Top vertical legend
placement

Bottom

Left 0.1,
1.0*unit::mm

distance of the
left side of the
scene to the left
side of the canvas
(relative or
absolute value)

0

5-117

5 Graphics and Animations

Layout and style parameters for scenes (Continued)

attribute name
possible
values/example meaning default

Bottom 0.1,
1.0*unit::mm

distance of the
bottom side of
the scene to the
bottom side of the
canvas (relative
or absolute
value)

0

Similar to the canvas, scenes can have a border (set via BorderWidth and
BorderColor). There is a (small) margin into which no graphical content is
rendered. Further, a header and a footer can be specified:
canvasheight := 55*unit::mm: canvaswidth := 70*unit::mm: borderwidth :=
0.5*unit::mm * 2/(canvasheight + canvaswidth): margin := 0.08: fontsize
:= 12: // Canvas::FooterFontSize textoptions := VerticalAlignment=
Center: arrowoptions := Color = RGB::Black, TipAngle = PI/3, TipLength
= 1.2*unit::mm, TipStyle = Filled: // scene exhibits the actual behavior
of the renderer scene := plot::Scene2d(Width = 1, Height = 1, Left = 0,
Bottom = 0, BackgroundColor = RGB::Grey, Axes = None, BorderWidth
= borderwidth*canvaswidth, BorderColor = RGB::Black, Margin =
margin*canvasheight, Header = "The Scene Header", HeaderFont = [fontsize],
Footer = "The Scene Footer", FooterFont = [fontsize], plot::Rectangle(0..1, 0..1,
Visible = TRUE, Filled = TRUE, FillPattern = Solid, FillColor = RGB::White,
LineColor = RGB::Black, LinesVisible = TRUE)): // SCENE provides the texts
and the arrows. The dashed rectangle // shows the margin for the ‘scene’ above
that the renderer should use. SCENE := plot::Scene2d(Width = 1.0, Height
= 1.0, Left = 0, Bottom = 0, BackgroundTransparent = TRUE, Axes = None,
BorderWidth = 0, Margin = 0, plot::Rectangle(0..1, 0..1, Visible = FALSE, Filled
= FALSE), plot::Rectangle(borderwidth + canvasheight/canvaswidth*margin
.. 1 - borderwidth - canvasheight/canvaswidth*margin, borderwidth +
margin ..1 - borderwidth - margin, Filled = FALSE, Color = RGB::Black,
LineStyle = Dashed), plot::Text2d("TopMargin", [0.12, 0.75], textoptions,
HorizontalAlignment = Left), plot::Arrow2d([0.18, 0.78], [0.18, 1 - borderwidth
- 0.5*margin], arrowoptions), plot::Text2d("LeftMargin", [0.12, 0.60],

5-118

Layout of Canvas and Scenes

textoptions, HorizontalAlignment = Left), plot::Arrow2d([0.11, 0.60],
[borderwidth + 0.5*margin, 0.60], arrowoptions), plot::Text2d("RightMargin",
[0.85, 0.60], textoptions, HorizontalAlignment = Right), plot::Arrow2d([0.86,
0.60], [1 - borderwidth - 0.5*margin, 0.60], arrowoptions),
plot::Text2d("BottomMargin", [0.12, 0.25], textoptions, HorizontalAlignment
= Left), plot::Arrow2d([0.18, 0.21], [0.18, borderwidth + 0.5*margin],
arrowoptions), plot::Text2d("BorderWidth", [0.12, 0.45], textoptions,
HorizontalAlignment = Left), plot::Arrow2d([0.11, 0.45], [borderwidth + 0.005,
0.45], arrowoptions)): plot(scene, SCENE, Layout = Relative, Height =
canvasheight, Width = canvaswidth, Margin = 0, BorderWidth = 0):

5-119

5 Graphics and Animations

Animations

In this section...

“Generate Simple Animations” on page 5-120

“Play Animations” on page 5-125

“The Number of Frames and the Time Range” on page 5-127

“What Can Be Animated?” on page 5-129

“Advanced Animations: The Synchronization Model” on page 5-131

“Frame by Frame Animations” on page 5-134

“Examples” on page 5-139

Generate Simple Animations
Each primitive of the plot library knows how many specifications of type
“range” it has to expect. For example, a univariate function graph in 2D
such as
plot::Function2d(sin(x), x = 0..2*PI):expects one plot range for the x coordinate,
whereas a bivariate function graph in 3D expects two plot ranges for the x
and y coordinate:
plot::Function3d(sin(x^2 + y^2), x = 0..2, y = 0..2):A contour plot in 2D expects
2 ranges for the x and y coordinate:
plot::Implicit2d(x^2 + y^2 - 1, x = -2..2, y = - 2..2):A contour plot in 3D expects
3 ranges for the x, y, and z coordinate:
plot::Implicit3d(x^2 + y^2 + z^2 - 1, x = -2..2, y = - 2..2, z = - 2..2):A line in 2D
does not expect any range specification:
plot::Line2d([0, 0], [1, 1]):

Note Whenever a graphical primitive receives a “surplus” range specification
by an equation such as a = amin..amax, the parameter a is interpreted as an
“animation parameter” assuming values from amin to amax.

Thus, it is very easy indeed to create animated objects: Just pass a “surplus”
range equation a = amin..amax to the generating call of the primitive. All
other entries and attributes of the primitive that are symbolic expressions

5-120

Animations

of the animation parameter will be animated. In the following call, both the
function expression as well as the x range of the function graph depend on the
animation parameter. Also, the ranges defining the width and the height of
the rectangle as well as the end point of the line depend on it:
plot(plot::Function2d(a*sin(x), x = 0..a*PI, a = 0.5..1), plot::Rectangle(0..a*PI,
0..a, a = 0.5..1, LineColor = RGB::Black), plot::Line2d([0, 0], [PI*a, a], a = 0.5
..1, LineColor = RGB::Black))

Additional range specifications may enter via the graphical attributes. Here
is an animated arc whose radius and “angle range” depend on the animation
parameter:
plot(plot::Arc2d(1 + a, [0, 0], AngleRange = 0..a*PI, a = 0..1)):

5-121

5 Graphics and Animations

Here, the attribute AngleRange is identified by its attribute name and thus
not assumed to be the specification of an animation parameter with animation
range.

Note Do make sure that attributes are specified by their correct names. If
an incorrect attribute name is used, it may be mistaken for an animation
parameter!

In the following examples, we wish to define a static semicircle, using
plot::Arc2d with AngleRange = 0..PI. However, AngleRange is spelled
incorrectly. A plot is created. It is an animated full circle with the animation
parameter AngelRange!
plot(plot::Arc2d(1, [0, 0], AngelRange = 0..PI)):

5-122

Animations

The animation parameter may be any symbolic parameter (identifier or
indexed identifier) that is different from the symbols used for the mandatory
range specifications (such as the names of the independent variables in
function graphs). The parameter must also be different from any of the
protected names of the plot attributes.

Note Animations are created object by object. The names of the animation
parameters in different objects need not coincide.

In the following example, different names a, b are used for the animation
parameters of the two functions:
plot(plot::Function2d(4*a*x, x = 0..1, a = 0..1), plot::Function2d(b*x^2, x
= 0..1, b = 1..4)):

5-123

5 Graphics and Animations

An animation parameter is a global symbolic name. It can be used as a
global variable in procedures defining the graphical object. The following
example features the 3D graph of a bivariate function that is defined by a
procedure using the globally defined animation parameter. Further, a fill
color functionmycolor is defined that changes the color in the course of the
animation. It could use the animation parameter as a global parameter,
just as the function f does. Alternatively, the animation parameter may
be declared as an additional input parameter. Refer to the help page of
FillColorFunction to find out, how many input parameters the fill color
function expects and which of the input parameters is fed with the animation
parameter. One finds that for plot::Function3d, the fill color function is
called with the coordinates x, y, z of the points on the graph. The next input
parameter (the 4th argument of mycolor) is the animation parameter:
f := (x, y) -> 4 - (x - a)^2 - (y - a)^2: mycolor := proc(x, y, z, a) local t; begin
t := sqrt((x - a)^2 + (y - a)^2): if t < 0.1 then return(RGB::Red) elif t <
0.4 then return(RGB::Orange) elif t < 0.7 then return(RGB::Green) else
return(RGB::Blue) end_if; end: plot(plot::Function3d(f, x = -1..1, y = -1..1, a =
-1..1, FillColorFunction = mycolor)):

5-124

Animations

Play Animations
When an animated plot is created in a MuPAD notebook, the first frame of
the animation appears as a static picture below the input region. To start the
animation, double click on the plot. An icon for starting the animation will
appear (make sure the item ‘Animation Bar’ of the ‘View’ menu is enabled):

5-125

5 Graphics and Animations

One can also use the slider to animate the picture “by hand.” Alternatively,
the ‘Animation’ menu provides an item for starting the animation.

5-126

Animations

The Number of Frames and the Time Range
By default, an animation consists of 50 different frames. The number of
frames can be set to be any positive number n by specifying the attribute
Frames = n. This attribute can be set in the generating call of the animated
primitives, or at some higher node of the graphical tree. In the latter case,
this attribute is inherited to all primitives that exist below the node. With
a = amin..amax, Frames = n, the i-th frame consists of a snapshot of the
primitive with

a=a[(min)]+(i-1)/(n-1)*fenced(a[(max)]-a[(min)]), i=1, Symbol::hellip, n

Increasing the number of frames does not mean that the animation runs
longer; the renderer does not work with a fixed number of frames per second
but processes all frames within a fixed time interval.

In the background, there is a “real time clock” used to synchronize the
animation of different animated objects. An animation has a time range
measured by this clock. The time range is set by the attributes TimeBegin =
t0, TimeEnd = t1 or, equivalently, TimeRange = t0..t1, where t0, t1 are
real numerical values representing physical times in seconds. These attribute
can be set in the generating call of the animated primitives, or at some higher
node of the graphical tree. In the latter case, these attributes are inherited by
all primitives that exist below the node.

The absolute value of t0 is irrelevant if all animated objects share the same
time range. Only the time difference t1 - t0matters. It is (an approximation
of) the physical time in seconds that the animation will last.

Note The parameter range amin..amax in the specification of the animation
parameter a = amin..amax together with Frames = n defines an equidistant
time mesh in the time interval set by TimeBegin = t0 and TimeEnd = t1.
The frame with a = amin is visible at the time t0, the frame with a = amax is
visible at the time t1.

5-127

5 Graphics and Animations

Note With the default TimeBegin = 0, the value of the attribute TimeEnd
gives the physical time of the animation in seconds. The default value is
TimeEnd = 10, i.e., an animation using the default values will last about 10
seconds. The number of frames set by Frames = n does not influence the time
interval, but changes the number of frames displayed in this time interval.

Here is a simple example:
plot(plot::Point2d([a, sin(a)], a = 0..2*PI, Frames = 100, TimeRange = 0..5)):

The point will be animated for about 5 physical seconds in which it moves
along one period of the sine graph. Each frame is displayed for about 0.05
seconds. After increasing the number of frames by a factor of 2, each frame is
displayed for about 0.025 seconds, making the animation somewhat smoother:
plot(plot::Point2d([a, sin(a)], a = 0..2*PI, Frames = 200, TimeRange = 0..5)):

5-128

Animations

Note that the human eye cannot distinguish between different frames if they
change with a rate of more than 25 frames per second. Thus, the number of
frames n set for the animation should satisfy

n<25*fenced(t1-t0)

Hence, with the default time range TimeBegin = t0 = 0, TimeEnd = t1 =
10 (seconds), it does not make sense to specify Frames = n with n > 250.
If a higher frame number is required to obtain a sufficient resolution of
the animated object, one should increase the time for the animation by a
sufficiently high value of TimeEnd.

What Can Be Animated?
We may regard a graphical primitive as a collection of plot attributes.
(Indeed, also the function expression sin(x) in plot::Function2d(sin(x),
x = 0..2*PI) is internally realized at the attribute Function = sin(x).) So,
the question is:

“Which attributes can be animated?”

5-129

5 Graphics and Animations

The answer is: “Almost any attribute can be animated!” Instead of listing
the attributes that allow animation, it is much easier to characterize the
attributes that cannot be animated:

• None of the canvas attributes can be animated. This includes layout
parameters such as the physical size of the picture. See the help page of
plot::Canvas for a complete list of all canvas attributes.

• None of the attributes of 2D scenes and 3D scenes can be animated. This
includes layout parameters, background color and style, camera positioning
in 3D etc. See the help pages of plot::Scene2d and plot::Scene3d for a
complete list of all scene attributes.

Note that there are camera objects of type plot::Camera that can be placed
in a 3D scene. These camera objects can be animated and allow to realize a
“flight” through a 3D scene. See section Cameras in 3D for details.

• None of the attributes of 2D coordinate systems and 3D coordinate
systems can be animated. This includes viewing boxes, axes, axes
ticks, and grid lines (rulings) in the background. See the help pages of
plot::CoordinateSystem2d and plot::CoordinateSystem3d for a complete list
of all attributes for coordinate systems.

Although the ViewingBox attribute of a coordinate system cannot be
animated, the user can still achieve animated visibility effects in 3D by
clipping box objects of type plot::ClippingBox.

• None of the attributes that are declared as “Attribute Type: inherited” on
their help page can be animated. This includes size specifications such as
PointSize, LineWidth etc.

• RGB and RGBa values cannot be animated. However, it is possible to
animate the coloring of lines and surfaces via user defined procedures. See
the help pages LineColorFunction and FillColorFunction for details.

• The texts of annotations such as Footer, Header, Title, legend entries, etc.
cannot be animated. The position of titles, however, can be animated.

There are special text objects plot::Text2d and plot::Text3d that allow to
animate the text as well as their position.

• Fonts cannot be animated.

5-130

Animations

• Attributes such as DiscontinuitySearch = TRUE or FillPattern =
Solid that can assume only finitely many values from a fixed discrete set
cannot be animated.

Nearly all attributes not falling into one of these categories can be animated.
You will find detailed information on this issue on the corresponding help
pages of primitives and attributes.

Advanced Animations: The Synchronization Model
As already explained in section The Number of Frames and the Time Range,
there is a “real time clock” running in the background that synchronizes the
animation of different animated objects.

Each animated object has its own separate “real time life span” set by the
attributes TimeBegin = t0, TimeEnd = t1 or, equivalently, TimeRange =
t0..t1. The values t0, t1 represent seconds measured by the “real time
clock.”

In most cases, there is no need to bother about specifying the life span. If
TimeBegin and TimeEnd are not specified, the default values TimeBegin = 0
and TimeEnd = 10 are used, i.e., the animation will last about 10 seconds.
These values only need to be modified

• if a shorter or longer real time period for the animation is desired, or

• if the animation contains several animated objects, where some of the
animated objects are to remain static while others change.

Here is an example for the second situation. The plot consists of 3 jumping
points. For the first 5 seconds, the left point jumps up and down, while the
other points remain at their initial position. Then, all points stay static for 1
second. After a total of 6 seconds, the middle point starts its animation by
jumping up and down, while the left point remains static in its final position
and the right points stays static in its initial position. After 9 seconds, the
right point begins to move as well. The overall time span for the animation
is the hull of the time ranges of all animated objects, i.e., 15 seconds in this
example:
p1 := plot::Point2d(-1, sin(a), a = 0..PI, Color = RGB::Red, PointSize =
5*unit::mm, TimeBegin = 0, TimeEnd = 5): p2 := plot::Point2d(0, sin(a), a =

5-131

5 Graphics and Animations

0..PI, Color = RGB::Green, PointSize = 5*unit::mm, TimeBegin = 6, TimeEnd
= 12): p3 := plot::Point2d(1, sin(a), a = 0..PI, Color = RGB::Blue, PointSize
= 5*unit::mm, TimeBegin = 9, TimeEnd = 15): plot(p1, p2, p3, PointSize =
3.0*unit::mm, YAxisVisible = FALSE):

Here, all points use the default settings VisibleBeforeBegin = TRUE and
VisibleAfterEnd = TRUE which make them visible as static objects outside
the time range of their animation. We set VisibleAfterEnd = FALSE
for the middle point, so that it disappears after the end of its animation.
With VisibleBeforeBegin = FALSE, the right point is not visible until its
animation starts:
p2::VisibleAfterEnd := FALSE: p3::VisibleBeforeBegin := FALSE: plot(p1, p2,
p3, PointSize = 3.0*unit::mm, YAxisVisible = FALSE):

5-132

Animations

We summarize the synchronization model of animations:

Note The total real time span of an animated plot is the physical real time
given by the minimum of the TimeBegin values of all animated objects in the
plot to the maximum of the TimeEnd values of all the animated objects.

• When a plot containing animated objects is created, the real time clock is
set to the minimum of the TimeBegin values of all animated objects in
the plot. The real time clock is started when pushing the ‘play’ button for
animations in the graphical user interface.

• Before the real time reaches the TimeBegin value t0 of an animated
object, this object is static in the state corresponding to the begin of its
animation. Depending on the attribute VisibleBeforeBegin, it may be
visible or invisible before t0.

• During the time from t0 to t1, the object changes from its original to its
final state.

• After the real time reaches the TimeEnd value t1, the object stays static
in the state corresponding to the end of its animation. Depending on the
value of the attribute VisibleAfterEnd, it may stay visible or become
invisible after t1.

5-133

5 Graphics and Animations

• The animation of the entire plot ends with the physical time given by the
maximum of the TimeEnd values of all animated objects in the plot.

Frame by Frame Animations
There are some special attributes such as VisibleAfter that are very useful to
build animations from purely static objects:

Note With VisibleAfter = t0, an object is invisible from the start of the
animation until time t0. Then it will appear and remain visible for the rest
of the animation.

Note With VisibleBefore = t1, an object is visible from the start of the
animation until time t1. Then it will disappear and remain invisible for the
rest of the animation.

These attributes should not be combined to define a “visibility range” from t0
to t1. Use the attribute VisibleFromTo instead:

Note With VisibleFromTo = t0..t1, an object is invisible from the start of
the animation until time t0. Then it will appear and remain visible until time
t1, when it will disappear and remain invisible for the rest of the animation.

We continue the example of the previous section in which we defined the
following animated points:
p1 := plot::Point2d(-1, sin(a), a = 0..PI, Color = RGB::Red, PointSize =
5*unit::mm, TimeBegin = 0, TimeEnd = 5): p2 := plot::Point2d(0, sin(a), a =
0..PI, Color = RGB::Green, PointSize = 5*unit::mm, TimeBegin = 6, TimeEnd
= 12): p3 := plot::Point2d(1, sin(a), a = 0..PI, Color = RGB::Blue, PointSize =
5*unit::mm, TimeBegin = 9, TimeEnd = 15): p2::VisibleAfterEnd := FALSE:
p3::VisibleBeforeBegin := FALSE:We add a further point p4 that is not
animated. We make it invisible at the start of the animation via the attribute

5-134

Animations

VisibleFromTo. It is made visible after 7 seconds to disappear again after
13 seconds:
p4 := plot::Point2d(0.5, 0.5, Color = RGB::Black, PointSize = 5*unit::mm,
VisibleFromTo = 7..13):The start of the animation is determined by p1 which
bears the attribute TimeBegin = 0, the end of the animation is determined
by p3 which has set TimeEnd = 15:
plot(p1, p2, p3, p4, PointSize = 3.0*unit::mm, YAxisVisible = FALSE):

Although a typical MuPAD animation is generated object by object, each
animated object taking care of its own animation, we can also use the
attributes VisibleAfter, VisibleBefore, VisibleFromTo to build up an
animation frame by frame:

Note “Frame by frame animations”: Choose a collection of (typically
static) graphical primitives that are to be visible in the i-th frame of the
animation. Set VisibleFromTo = t[i]..t[i+1] for these primitives, where
t[i]..t[i+1] is the real time life span of the i-th frame (in seconds). Finally,
plot all frames in a single plot command.

Here is an example. We let two points wander along the graphs of the sine
and the cosine function, respectively. Each frame is to consist of a picture of

5-135

5 Graphics and Animations

two points. We use plot::Group2d to define the frame; the group forwards the
attribute VisibleFromTo to all its elements:
for i from 0 to 101 do t[i] := i/10; end_for: for i from 0 to 100 do x := i/100*PI;
myframe[i] := plot::Group2d(plot::Point2d([x, sin(x)], Color = RGB::Red),
plot::Point2d([x, cos(x)], Color = RGB::Blue), VisibleFromTo = t[i]..t[i + 1]);
end_for: plot(myframe[i] $ i = 0..100, PointSize = 5.0*unit::mm):

delete t, x:This “frame by frame” animation certainly needs a little bit more
coding effort than the equivalent objectwise animation, where each of the
points is animated:
delete i: plot(plot::Point2d([i/100*PI, sin(i/100*PI)], i = 0..100, Color =
RGB::Red), plot::Point2d([i/100*PI, cos(i/100*PI)], i = 0..100, Color =
RGB::Blue), Frames = 101, TimeRange = 0..10, PointSize = 5.0*unit::mm):

5-136

Animations

There is, however, a special kind of plot where “frame by frame” animations
are very useful. Note that in the present version of the graphics, new plot
objects cannot be added to a scene that is already rendered. With the special
“visibility” animations for static objects, however, one can easily simulate a
plot that gradually builds up: Fill the frames of the animation with static
objects that are visible for a limited time only. The visibility can be chosen
very flexibly by the user. For example, the static objects can be made visible
only for one frame (VisibleFromTo) so that the objects seem to move.

In the following example, we use VisibleAfter to fill up the plot
gradually. We demonstrate the caustics generated by sunlight in a tea
cup. The rim of the cup, regarded as a mirror, is given by the function

f(x)=-sqrt(1-x^2) , x [- 1, 1] (a semicircle). Sun rays parallel to the
y-axis are reflected by the rim. After reflection at the point (x, f(x)) of the rim,

a ray heads into the direction fenced(-1, -1/2 * (f’(x) - 1/f’(x))) if x

is positive. It heads into the direction fenced(1, 1/2*(f’(x) - 1/f’(x)))
if x is negative. Sweeping through the mirror from left to right, the incoming
rays as well as the reflected rays are visualized as lines. In the animation,
they become visible after the time 5x, where x is the coordinate of the rim
point at which the ray is reflected:
f := x -> -sqrt(1 - x^2): plot(// The static rim: plot::Function2d(f(x), x = -1..1,
Color = RGB::Black), // The incoming rays: plot::Line2d([x, 2], [x, f(x)],

5-137

5 Graphics and Animations

VisibleAfter = 5*x) $ x in [-1 + i/20 $ i = 1..39], // The reflected rays leaving
to the right: plot::Line2d([x, f(x)], [1, f(x) + (1-x)*(f’(x) - 1/f’(x))/2], Color =
RGB::Orange, VisibleAfter = 5*x) $ x in [-1 + i/20 $ i = 1..19], // The reflected
rays leaving to the left: plot::Line2d([x, f(x)], [-1, f(x) - (x+1)*(f’(x) - 1/f’(x))/2],
Color = RGB::Orange, VisibleAfter = 5*x) $ x in [-1 + i/20 $ i = 21..39],
ViewingBox = [-1..1, -1..1]):

Compare the spherical mirror with a parabolic mirror that has a true focal
point:
f := x -> -1 + x^2: plot(// The static rim: plot::Function2d(f(x), x = -1..1, Color =
RGB::Black), // The incoming rays: plot::Line2d([x, 2], [x, f(x)], VisibleAfter
= 5*x) $ x in [-1 + i/20 $ i = 1..39], // The reflected rays leaving to the right:
plot::Line2d([x, f(x)], [1, f(x) + (1-x)*(f’(x) - 1/f’(x))/2], Color = RGB::Orange,
VisibleAfter = 5*x) $ x in [-1 + i/20 $ i = 1..19], // The reflected rays leaving
to the left: plot::Line2d([x, f(x)], [-1, f(x) - (x+1)*(f’(x) - 1/f’(x))/2], Color =
RGB::Orange, VisibleAfter = 5*x) $ x in [-1 + i/20 $ i = 21..39], ViewingBox =
[-1..1, -1..1]):

5-138

Animations

Examples

Example 1
We build a 2D animation that displays a function f(x) together with the
integral F(x)=int(f(y), y=‘‘..x) . The area between the graph of f
and the x-axis is displayed as an animated hatch object. The current value of
F(x) is displayed by an animated text:
DIGITS := 2: // the function: f := x -> cos(x^2): // the anti-derivative: F := x ->
numeric::int(f(y), y = 0..x): // the graph of f(x): g := plot::Function2d(f(x), x =
0..6, Color = RGB::Blue): // the graph of F(x): G := plot::Function2d(F(x), x
= 0..6, Color = RGB::Black): // a point moving along the graph of F(x): p :=
plot::Point2d([a, F(a)], a = 0..6, Color = RGB::Black): // hatched region between
the origin and the moving point p: h := plot::Hatch(g, 0, 0 ..a, a = 0..6, Color =
RGB::Red): // the right border line of the hatched region: l := plot::Line2d([a,
0], [a, f(a)], a = 0..6, Color = RGB::Red): // a dashed vertical line from f
to F: L1 := plot::Line2d([a, f(a)], [a, F(a)], a = 0..6, Color = RGB::Black,
LineStyle = Dashed): // a dashed horizontal line from the y axis to F: L2 :=
plot::Line2d([-0.1, F(a)], [a, F(a)], a = 0..6, Color = RGB::Black, LineStyle =
Dashed): // the current value of F at the moving point p: t := plot::Text2d(a ->
F(a), [-0.2, F(a)], a = 0..6, HorizontalAlignment = Right): plot(g, G, p, h, l, L1,
L2, t, YTicksNumber = None, YTicksAt = [-1, 1]): delete DIGITS:

5-139

5 Graphics and Animations

delete f, F, g, G, p, h, l, L1, L2, t:

Example 2
We build two 3D animations. The first starts with a rectangular strip that is
deformed to an annulus in the x, y plane:
c := a -> 1/2 *(1 - 1/sin(PI/2*a)): mycolor := (u, v, x, y, z) -> [(u - 0.8)/0.4, 0, (1.2
- u)/0.4]: rectangle2annulus := plot::Surface([c(a) + (u - c(a))*cos(PI*v), (u -
c(a))*sin(PI*v), 0], u = 0.8..1.2, v = -a..a, a = 1/10^10..1, FillColorFunction =
mycolor, Mesh = [3, 40], Frames = 40): plot(rectangle2annulus, Axes = None,
CameraDirection = [-11, -3, 3]):

5-140

Animations

The second animation twists the annulus to become a Moebius strip:
annulus2moebius := plot::Surface([((u - 1)*cos(a*v*PI/2) + 1)*cos(PI*v), ((u
- 1)*cos(a*v*PI/2) + 1)*sin(PI*v), (u - 1)*sin(a*v*PI/2)], u = 0.8..1.2, v =
-1..1, a = 0..1, FillColorFunction = mycolor, Mesh = [3, 40], Frames = 20):
plot(annulus2moebius, Axes = None, CameraDirection = [-11, -3, 3]):

Note that the final frame of the first animation coincides with the first frame
of the second animation. To join the two separate animations, we can set

5-141

5 Graphics and Animations

appropriate visibility ranges and plot them together. After 5 seconds, the first
animation object vanishes and the second takes over:
rectangle2annulus::VisibleFromTo := 0..5: annulus2moebius::VisibleFromTo
:= 5..7: plot(rectangle2annulus, annulus2moebius, Axes = None,
CameraDirection = [-11, -3, 3]):

Example 3
In this example, we consider the planar celestial 3 body problem. We solve
the system of differential equations

m_s*x_s’’ = -(m_s*m_1*(x_s-x_1))/sqrt((x_s-x_1)^2 + (y_s-y_1)^2)^3
-(m_s*m_2*(x_s-x_2))/sqrt((x_s-x_2)^2 + (y_s-y_2)^2)^3

m_s*y_s’’ = -(m_s*m_1*(y_s-y_1))/sqrt((x_s-x_1)^2 + (y_s-y_1)^2)^3
-(m_s*m_2*(y_s-y_2))/sqrt((x_s-x_2)^2 + (y_s-y_2)^2)^3

5-142

Animations

m_1*x_1’’ = -(m_1*m_s*(x_1-x_s))/sqrt((x_1-x_s)^2 + (y_1-y_s)^2)^3
-(m_1*m_2*(x_1-x_2))/sqrt((x_1-x_2)^2 + (y_1-y_2)^2)^3

m_1*y_1’’ = -(m_1*m_s*(y_1-y_s))/sqrt((x_1-x_s)^2 + (y_1-y_s)^2)^3
-(m_1*m_2*(y_1-y_2))/sqrt((x_1-x_2)^2 + (y_1-y_2)^2)^3

m_2*x_2’’ = -(m_2*m_s*(x_2-x_s))/sqrt((x_2-x_s)^2 + (y_2-y_s)^2)^3
-(m_2*m_1*(x_2-x_1))/sqrt((x_2-x_1)^2 + (y_2-y_1)^2)^3

m_2*y_2’’ = -(m_2*m_s*(y_2-y_s))/sqrt((x_2-x_s)^2 + (y_2-y_s)^2)^3
-(m_2*m_1*(y_2-y_1))/sqrt((x_2-x_1)^2 + (y_2-y_1)^2)^3

which is nothing but the equations of motions for two planets with masses
m1, m2 at positions (x1, y1), (x2, y2) revolving in the x, y plane around a sun of
mass ms positioned at (xs, ys). We specify the mass ratios: The first planet
is a giant with a mass m1 that is 4% of the sun’s mass. The second planet
is much smaller:
ms := 1: m1 := 0.04: m2 := 0.0001:As we will see, the motion of the giant is
nearly undisturbed by the small planet. The small one, however, is heavily
disturbed by the giant and, finally, kicked out of the system after a near
collision.

5-143

5 Graphics and Animations

We solve the ODEs via the MuPAD numerical ODE solve numeric::odesolve2
that provides a solution vector

Y(t)=[x_s(t), x_s’(t), y_s(t), y_s’(t), x_1(t), x_1’(t), y_1(t), y_1’(t), x_2(t), x_2’(t),
y_2(t), y_2’(t)]

The initial conditions are chosen such that the total momentum vanishes, i.e.,
the total center of mass stays put (at the origin):
Y := numeric::odesolve2(numeric::ode2vectorfield({xs’’(t) =
-m1*(xs(t)-x1(t))/sqrt((xs(t)-x1(t))^2 + (ys(t)-y1(t))^2)^3
-m2*(xs(t)-x2(t))/sqrt((xs(t)-x2(t))^2 + (ys(t)-y2(t))^2)^3, ys’’(t)
= -m1*(ys(t)-y1(t))/sqrt((xs(t)-x1(t))^2 + (ys(t)-y1(t))^2)^3
-m2*(ys(t)-y2(t))/sqrt((xs(t)-x2(t))^2 + (ys(t)-y2(t))^2)^3, x1’’(t)
= -ms*(x1(t)-xs(t))/sqrt((x1(t)-xs(t))^2 + (y1(t)-ys(t))^2)^3
-m2*(x1(t)-x2(t))/sqrt((x1(t)-x2(t))^2 + (y1(t)-y2(t))^2)^3, y1’’(t)
= -ms*(y1(t)-ys(t))/sqrt((x1(t)-xs(t))^2 + (y1(t)-ys(t))^2)^3
-m2*(y1(t)-y2(t))/sqrt((x1(t)-x2(t))^2 + (y1(t)-y2(t))^2)^3, x2’’(t)
= -ms*(x2(t)-xs(t))/sqrt((x2(t)-xs(t))^2 + (y2(t)-ys(t))^2)^3
-m1*(x2(t)-x1(t))/sqrt((x2(t)-x1(t))^2 + (y2(t)-y1(t))^2)^3, y2’’(t)
= -ms*(y2(t)-ys(t))/sqrt((x2(t)-xs(t))^2 + (y2(t)-ys(t))^2)^3
-m1*(y2(t)-y1(t))/sqrt((x2(t)-x1(t))^2 + (y2(t)-y1(t))^2)^3, xs(0) =
-m1 , x1(0) = ms, x2(0) = 0, ys(0) = 0.7*m2, y1(0) = 0, y2(0) = -0.7*ms, xs’(0)
= -1.01*m2, x1’(0) = 0, x2’(0) = 1.01*ms, ys’(0) = -0.9*m1, y1’(0) = 0.9*ms,
y2’(0) = 0}, [xs(t), xs’(t), ys(t), ys’(t), x1(t), x1’(t), y1(t), y1’(t), x2(t), x2’(t),
y2(t), y2’(t)])):The positions [xs(t), ys(t)] = [Y(t)[1], Y(t)[3]], [x1(t), y1(t)] =
[Y(t)[5], Y(t)[7]], [x2(t), y2(t)] = [Y(t)[9], Y(t)[11]] are computed on
an equidistant time mesh with dt = 0.05. The animation is built up “frame by
frame” by defining static points with suitable values of VisibleFromTo and
static line segments with suitable values of VisibleAfter.

Setting VisibleFromTo = t..t + 0.99*dt, each solution point is visible
only for a short time (the factor 0.99 makes sure that not two points can be
visible simultaneously on each orbit). The orbits of the points are realized as
line segments from the positions at time t - dt to the positions at time t. The
line segments become visible at time t and stay visible for the rest of the
animation (VisibleAfter = t), thus leaving a “trail” of the moving points.

5-144

Animations

We obtain the following graphical solution (the computation takes about two
minutes on a 1 GHz computer):
dt := 0.05: imax := 516: plot(// The sun: plot::Point2d(Y(t)[1], Y(t)[3], Color
= RGB::Orange, VisibleFromTo = t..t + 0.99*dt, PointSize = 4*unit::mm)
$ t in [i*dt $ i = 0..imax], // The giant planet: plot::Point2d(Y(t)[5], Y(t)[7],
Color = RGB::Red, VisibleFromTo = t..t + 0.99*dt, PointSize = 3*unit::mm)
$ t in [i*dt $ i = 0..imax], // The orbit of the giant planet: plot::Line2d([Y(t -
dt)[5], Y(t - dt)[7]], [Y(t)[5], Y(t)[7]], Color = RGB::Red, VisibleAfter = t) $ t in
[i*dt $ i = 1..imax], // The small planet: plot::Point2d(Y(t)[9], Y(t)[11], Color =
RGB::Blue, VisibleFromTo = t..t + 0.99*dt, PointSize = 2*unit::mm) $ t in
[i*dt $ i = 0..imax], // The orbit of the small planet: plot::Line2d([Y(t - dt)[9],
Y(t - dt)[11]], [Y(t)[9], Y(t)[11]], Color = RGB::Blue, VisibleAfter = t) $ t in
[i*dt $ i = 1..imax]):

5-145

5 Graphics and Animations

Groups of Primitives
An arbitrary number of graphical primitives in 2D or 3D can be collected in
groups of type plot::Group2d or plot::Group3d, respectively. This is useful for
inheriting attribute values to all elements in a group.

In the following example, we visualize random generators with different
distributions by using them to position random points:
r1 := stats::normalRandom(0, 1): group1 := plot::Group2d(plot::Point2d(r1(),
r1()) $ i = 1..200): r2 := stats::uniformRandom(-3, 3): group2 :=
plot::Group2d(plot::Point2d(r2(), r2()) $ i = 1..500): plot(group1, group2, Axes
= Frame):

We cannot distinguish between the two kinds of points. Due to the grouping, it
is very easy to change their color and size by setting the appropriate attributes
in the groups. Now, the two kinds of points can be distinguished easily:
group1::PointColor := RGB::Red: group1::PointSize := 1.5*unit::mm:
group2::PointColor := RGB::Blue: group2::PointSize := 1.3*unit::mm:
plot(group1, group2, Axes = Frame):

5-146

Groups of Primitives

5-147

5 Graphics and Animations

Transformations
Affine linear transformations (x) -> A*x+b with a vector b and a
matrix A can be applied to graphical objects via transformation objects. There
are special transformations such as translations, scaling, and rotations as
well as general affine linear transformations:

• plot::Translate2d([b1, b2], Primitive1, Primitive2, ...) applies
the translation (x) -> x+b by the vector b = [b1, b2] to all points
of 2D primitives.

• plot::Translate3d([b1, b2, b3], Primitive1, ...) applies the
translation (x) -> x+b by the vector b = [b1, b2, b3] to all points
of 3D primitives.

• plot::Reflect2d([x1, y1], [x2, y2], Primitive1, ...) reflects all
2D primitives about the line through the points [x1, y1] and [x2, y2].

• plot::Reflect3d([x, y, z], [nx, ny, nz], Primitive1, ...)
reflects all 3D primitives about the plane through the point [x, y, z] with
the normal [nx, ny, nz].

• plot::Rotate2d(angle, [c1, c2], Primitive1, ...) rotates all points
of 2D primitives counter clockwise by the given angle about the pivot
point [c1, c2].

• plot::Rotate3d(angle, [c1, c2, c3], [d1, d2, d3], Primitive1,
...) rotates all points of 3D primitives by the given angle around the
rotation axis specified by the pivot point [c1, c2, c3] and the direction
[d1, d2, d3].

• plot::Scale2d([s1, s2], Primitive1, ...) applies the diagonal
scaling matrix diag(s1, s2) to all points of 2D primitives.

• plot::Scale3d([s1, s2, s3], Primitive1, ...) applies the diagonal
scaling matrix diag(s1, s2, s3) to all points of 3D primitives.

• plot::Transform2d([b1, b2], A, Primitive1, ...) applies the
general affine linear transformation (x) -> A*x+b with a 2 2
matrix A and a vector b = [b1, b2] to all points of 2D primitives.

• plot::Transform3d([b1, b2, b3], A, Primitive1, ...) applies the
general affine linear transformation (x) -> A*x+b with a 3 3
matrix A and a vector b = [b1, b2, b3] to all points of 3D primitives.

5-148

Transformations

The ellipses plot::Ellipse2d provided by the plot library have axes parallel to
the coordinate axes. We use a rotation to create an ellipse with a different
orientation:
center := [1, 2]: ellipse := plot::Ellipse2d(2, 1, center): plot(plot::Rotate2d(PI/4,
center, ellipse))

Transform objects can be animated. We build a group consisting of the ellipse
and its symmetry axes. An animated rotation is applied to the group:
g := plot::Group2d(ellipse, plot::Line2d(center, [center[1] + 2, center[2]]),
plot::Line2d(center, [center[1] - 2, center[2]]), plot::Line2d(center,
[center[1], center[2] + 1]), plot::Line2d(center, [center[1], center[2] - 1])):
plot(plot::Rotate2d(a, center, a = 0..2*PI, g)):

5-149

5 Graphics and Animations

Objects inside an animated transformation can be animated, too. The
animations run independently and may be synchronized via suitable values
of the TimeRange as described in section “Advanced Animations: The
Synchronization Model” on page 5-131.

We generate a sphere s of radius r with center c = (cx, cy, cz). We wish to
visualize the tangent plane at various points of the surface. We start with
the tangent plane of the north pole and rotate it around the y axes (i.e., along
the line with zero longitude) by the polar angle θ for the first 3 seconds. Then
it is rotated around the z-axis (i.e., along the line with constant latitude)
by the azimuth angle ϕ. We end up with the tangent plane at the point x
= cx + cos(ϕ)sin(θ), y = cy + sin(ϕ)sin(θ), z = cz + cos(θ). The two rotations
are realized as a nested animation: By specifying disjoint time ranges, the
second rotation (around the z-axis) starts when the first rotation (around
the y-axis) is finished:
delete t:r := 1: // the radius of the sphere R := 1.01: // increase the radius a little
bit c := [0, 0, 0]: // the center of the sphere thet := PI/3: // spherical coordinates
of phi := PI/4: // the final point p // the final point: p := plot::Point3d(c[1] +
R*cos(phi)*sin(thet), c[2] + R*sin(phi)*sin(thet), c[3] + R*cos(thet), PointSize
= 2*unit::mm, Color = RGB::Black): // the sphere: s := plot::Sphere(r, c, Color
= RGB::Green): // the meridian at thet = 0 c1 := plot::Curve3d([c[1] + R*sin(t),
c[2], c[3] + R*cos(t)], t = 0..thet, Color = RGB::Black): // the meridian at thet =
0 c2 := plot::Curve3d([c[1] + R*cos(t)*sin(thet), c[2] + R*sin(t)*sin(thet), c[3]
+ R*cos(thet)], t = 0..phi, Color = RGB::Black): // form a group consisting of

5-150

Transformations

the tangent plane and its normal: g := plot::Group3d(plot::Surface([c[1] + u,
c[2] + v, c[3] + R], u = -1..1, v = -1..1, Mesh = [2, 2], Color = RGB::Red.[0.3]),
plot::Arrow3d([c[1], c[2], c[3] + R], [c[1], c[2], c[3] + R + 0.7])): // rotate the
group for 3 seconds along the meridian: g := plot::Rotate3d(a, c, [0, 1, 0], a =
0..thet, g, TimeRange = 0..3): // rotate the group for further 3 seconds along
the azimuth: g := plot::Rotate3d(a, c, [0, 0, 1], a = 0..phi, g, TimeRange = 3..6):
plot(s, g, c1, c2, p, CameraDirection = [2, 3, 4]):

5-151

5 Graphics and Animations

Legends
The annotations of a MuPAD plot may include a legend. A legend is a small
table that relates the color of an object with some text explaining the object:
f := 3*x*sin(2*x): g := 4*x^2*cos(x): h := sin(4*x)/x: plotfunc2d(f, g, h, x =
0..PI/2):

By default, legends are provided only by plotfunc2d and plotfunc3d. These
routines define the legend texts as the expressions with which the functions
are passed to plotfunc2d or plotfunc3d, respectively. A corresponding plot
command using primitives of the plot library does not generate the legend
automatically:
plot(plot::Function2d(f, x = 0..PI/2, Color = RGB::Red), plot::Function2d(g,
x = 0..PI/2, Color = RGB::Green), plot::Function2d(h, x = 0..PI/2, Color =
RGB::Blue)):

5-152

Legends

However, legends can be requested explicitly:
plot(plot::Function2d(f, x = 0..PI/2, Color = RGB::Red, Legend = "Function 1:
".expr2text(f)), plot::Function2d(g, x = 0..PI/2, Color = RGB::Green, Legend
= "Function 2: ".expr2text(g)), plot::Function2d(h, x = 0..PI/2, Color =
RGB::Blue, Legend = "Function 3: ".expr2text(h))):

Each graphical primitive accepts the attribute Legend. Passing this attribute
to an object triggers several actions:

5-153

5 Graphics and Animations

• The object attribute LegendText is set to the given string.

• The object attribute LegendEntry is set to TRUE.

• A hint is sent to the scene containing the object advising it to use the scene
attribute LegendVisible = TRUE.

The attributes LegendText and LegendEntry are visible in the “object
inspector” of the interactive viewer (see section Viewer, Browser, and
Inspector: Interactive Manipulation) and can be manipulated interactively
for each single primitive after selection in the “object browser.” The attribute
LegendVisible is associated with the scene object accessible via the “object
browser.”

At most 20 entries can be displayed in a legend. If more entries are specified
in a plot command, the surplus entries are ignored. Further, the legend may
not cover more than 50% of the height of the drawing area of a scene. Only
those legend entries fitting into this space are displayed; remaining entries
are ignored.

If the attribute LegendText = TRUE is set for a primitive, its legend entry is
determined as follows:

• If the attribute LegendText is specified, its value is used for the legend text.

• If no LegendText is specified, but the Name attribute is set, the name is
used for the legend text.

• If no Name attribute is specified either, the type of the object such as
Function2d, Curve2d etc. is used for the legend text.

Here are all attributes relevant for legends:

5-154

Legends

(Continued)

attribute
name

possible
values/examplemeaning default

browser
entry

Legend string sets
LegendText
to the given
string,
LegendEntry
to TRUE,
and
LegendVisible
to TRUE.

LegendEntry TRUE,
FALSE

add this
object to the
legend?

TRUE for
function graphs,
curves, and
surfaces, FALSE
otherwise

primitive

LegendText string legend text primitive

LegendVisible TRUE,
FALSE

legend
on/off

TRUE for
plotfunc2d/3d,
FALSE otherwise

Scene2d/3d

LegendPlacementTop,
Bottom

vertical
placement

Bottom Scene2d/3d

LegendAlignmentLeft,
Center,
Right

horizontal
alignment

Center Scene2d/3d

LegendFont see
section
Fonts

font for the
legend text

sans-serif 8 Scene2d/3d

5-155

5 Graphics and Animations

Fonts
The plot attributes allow to specify the fonts AxesTitleFont, FooterFont,
HeaderFont, LegendFont, TextFont, TicksLabelFont, and TitleFont. Each
such font is specified by a MuPAD list of the following form:

[<family>, <size>, <Bold>, <Italic>, <color>, <alignment>].

The parameters are:

family – the font family name: a string.
The available font families depend on the fonts that are
installed on your machine. For example, typical font
families available on Microsoft Windows systems are
"Times New Roman" (of type ‘serif’), "Arial" (of type
‘sans-serif’), or "Courier New" (of type ‘monospace’).
To find out which fonts are available on your machine,
open the menu ‘Format,’ submenu ‘Font’ in your MuPAD
notebook. The first column in the font dialog provides the
names of the font families that you may specify. You may
also specify one the three generic family names "serif",
"sans-serif", or "monospace", and the system will
automatically choose one of the available font families of
the specified type for you.

size – the size of the font in integral points: a positive integer.

Bold – if specified, the font is bold

Italic – if specified, the font is italic.

color – an RGB color value: a list of 3 numerical values between
0 and 1

alignment– text alignment in case of new-lines: one of the flags Left,
Center, or Right.

In the following example, we specify the font for the canvas header:
plot(plot::Function2d(sin(x), x = 0..2*PI), Header = "The sine function",
HeaderFont = ["monospace", 14, Bold]):

5-156

Fonts

All font parameters are optional; some default values are chosen for entries
that are not specified. For example, if you do not care about the footer font
family for your plot, but you insist on a specific font size, you may specify an
18 pt font as follows:
plot(plot::Function2d(sin(x), x = 0..2*PI), Footer = "The sine function",
FooterFont = [18]):

5-157

5 Graphics and Animations

Colors

In this section...

“RGB Colors” on page 5-158

“HSV Colors” on page 5-161

The most prominent plot attribute, available for all primitives, is Color. The
MuPAD plot library knows 3 different types of colors:

• The attribute PointColor refers to the color of points in 2D and 3D (of type
plot::Point2d and plot::Point3d, respectively).

• The attribute LineColor refers to the color of line objects in 2D and 3D. This
includes the color of function graphs in 2D, curves in 2D and in 3D, polygon
lines in 2D and in 3D, etc. Also 3D objects such as function graphs in 3D,
parametrized surfaces etc. react to the attribute LineColor; it defines the
color of the coordinate mesh lines that are displayed on the surface.

• The attribute FillColor refers to the color of closed and filled polygons in
2D and 3D as well as hatched regions in 2D. Further, it sets the surface
color of function graphs in 3D, parametrized surfaces etc. This includes
spheres, cones etc.

The primitives also accept the attribute Color as a shortcut for any one of
these colors. Depending on the primitive, either PointColor, LineColor, or
FillColor is set with the Color attribute.

RGB Colors
MuPAD uses the RGB color model, i.e., colors are specified by lists [r, g, b]
of red, green, and blue values between 0 and 1. Black and white correspond
to[0, 0, 0] and [1, 1, 1], respectively. The library RGB contains
numerous color names with corresponding RGB values:
RGB::Black, RGB::White, RGB::Red, RGB::SkyBlue[0.0, 0.0, 0.0], [1.0, 1.0,
1.0], [1.0, 0.0, 0.0], [0.0, 0.8, 1.0]

5-158

Colors

You may list all color names available in the RGB library via info(RGB).
Alternatively, there is the command RGB::ColorNames() returning a
complete list of names, optionally filtered. For example, let us list all the
colors whose names contain “Red”:
RGB::ColorNames(Red)[CadmiumRedDeep, CadmiumRedLight,
CardinalRed, CarmineRed, DarkRed, EnglishRed, IndianRed, OrangeRed,
PermanentRedViolet, Red, VenetianRed, VioletRed, VioletRedMedium,
VioletRedPale]

To get them displayed, use
RGB::plotColorPalette("red")

After loading the color library via use(RGB), you can use the color names in
the short form Black, White, IndianRed etc.

In MuPAD, the color of all graphic elements can either be specified by RGB
or RGBa values.

RGBa color values consist of lists [r, g, b, a] containing a fourth entry: the
“opacity” value a between 0 and 1. For a = 0, a surface patch painted with
this RGBa color is fully transparent (i.e., invisible). For a = 1, the surface

5-159

5 Graphics and Animations

patch is opaque, i.e., it hides plot objects that are behind it. For 0 < a < 1, the
surface patch is semitransparent, i.e., plot objects behind it “shine through.”

RGBa color values can be constructed easily via the RGB library. One only
has to append a fourth entry to the [r, g, b] lists provided by the color names.
The easiest way to do this is to append the list [a] to the RGB list via the
concatenation operator ‘.’. We create a semitransparent ‘grey’:
RGB::Grey.[0.5][0.752907, 0.752907, 0.752907, 0.5]

The following command plots a highly transparent red box, containing a
somewhat less transparent green box with an opaque blue box inside:
plot(plot::Box(-3..3, -3..3, -3..3, FillColor = RGB::Red.[0.2]), plot::Box(-2..2,
-2..2, -2..2, FillColor = RGB::Green.[0.3]), plot::Box(-1..1, -1..1, -1..1, FillColor
= RGB::Blue), LinesVisible = TRUE, LineColor = RGB::Black, Scaling =
Constrained):

In the following example, we plot points randomly distributed with random
colors and random translucencies:
plot(plot::PointList2d([[frandom() $ i = 1..2, [frandom() $ i = 1..4]] $ i = 1..300],
PointSize=4), Axes=None, Scaling=Constrained)

5-160

Colors

HSV Colors
Apart from the RGB model, there are various other popular color formats
used in computer graphics. One is the HSV model (Hue, Saturation, Value).
The RGB library provides the routines RGB::fromHSV and RGB::toHSV to
convert HSV colors to RGB colors and vice versa:
hsv := RGB::toHSV(RGB::Orange)[24.0, 1.0, 1.0]

RGB::fromHSV(hsv) = RGB::Orange[1.0, 0.4, 0.0] = [1.0, 0.4, 0.0]

With the RGB::fromHSV utility, all colors in a MuPAD plot can be specified
easily as HSV colors. For example, the color ‘violet’ is given by the HSV values
[290, 0.4, 0.6], whereas ‘dark green’ is given by the HSV specification
[120, 1, 0.4]. Hence, a semitransparent violet sphere intersected by an
opaque dark green plane may be specified as follows:
plot(plot::Sphere(1, [0, 0, 0], Color = RGB::fromHSV([290, 0.4, 0.6]).[0.5]),
plot::Surface([x, y, 0.5], x = -1..1, y = -1..1, Mesh = [2, 2], Color =
RGB::fromHSV([120, 1, 0.4]))):

5-161

5 Graphics and Animations

5-162

Save and Export Pictures

Save and Export Pictures

In this section...

“Save and Export Interactively” on page 5-163

“Save in Batch Mode” on page 5-163

Save and Export Interactively
The MuPAD kernel uses an xml format to communicate with the renderer.
Usually, a plot command in MuPAD sends a stream of xml data directly to
the viewer which renders the picture.

After double clicking on the picture, the viewer (see section Viewer,
Browser, and Inspector: Interactive Manipulation) provides a menu item
‘Edit/Export…’ that opens a dialog allowing to save the picture in a variety
of graphical formats:

• The ‘VCam Graphics’ format, indicated by the file extension ‘.xvz’. This is a
compressed version of the xml ascii data used by MuPAD.

• The ‘Uncompressed VCam Graphics’ format, indicated by the file extension
‘.xvc,’ saves these xml data in an uncompressed ascii file (the resulting file
can be read with any text editor).

One can use the MuPAD graphics tool ‘VCam’ to open such files and display
the xml data.

• Further, there are various standard bitmap formats such as bmp, jpg, eps
etc. in which the image may be stored.

Save in Batch Mode
MuPAD plots can also be saved in “batch mode” by specifying the attribute
OutputFile = filename in a plot call:
plot(primitives, OutputFile = "mypicture.xvz"):Here, the extension .xvz of
the file name "mypicture.xvz" indicates that the MuPAD xml data are to be
written and, finally, the file is to be compressed. Alternatively, the extension
.xvc may be used to write the xml data without final compression of the
file (the resulting text file can be read with any text editor). Files in both

5-163

5 Graphics and Animations

formats can be opened by the MuPAD graphics tool ‘VCam’ to generate the
plot encoded by the xml data.

If the MuPAD environment variable WRITEPATH does not have a value, the
previous call creates the file in the directory where MuPAD is installed. An
absolute pathname can be specified to place the file anywhere else:
plot(primitives, OutputFile =
"C:\\Documents\\mypicture.xvz"):Alternatively, the environment variable
WRITEPATH can be set:
WRITEPATH := "C:\\Documents": plot(primitives, OutputFile
= "mypicture.xvz"):Now, the plot data are stored in the file
‘C:\Documents\mypicture.xvz’.

If a MuPAD notebook of is saved to a file, its location is available inside the
notebook as the environment variable NOTEBOOKPATH. If you wish to save your
plot in the same folder as the notebook, you may call
plot(primitives, OutputFile = NOTEBOOKPATH."mypicture.xvz"):Apart from
saving files as xml data, MuPAD pictures can also be saved in a variety of
standard graphical formats such as jpg, eps, svg, bmp etc. In batch mode, the
export is triggered by the OutputFile attribute in the same way as for saving
in xml format. Just use an appropriate extension of the filename indicating
the format. The following commands save the plot in four different files in jpg,
eps, svg, and bmp format, respectively:
plot(primitives, OutputFile = "mypicture.jpg"): plot(primitives, OutputFile
= "mypicture.eps"): plot(primitives, OutputFile = "mypicture.svg"):
plot(primitives, OutputFile = "mypicture.bmp"):An animated MuPAD plot
can be exported to avi format:
plot(plot::Function2d(sin(x - a), x = 0..2*PI, a = 0..5) OutputFile =
"myanimation.avi"):If no file extension is specified by the file name, the
default extension .xvc is used, i.e., compressed xml data are written.

In addition to OutputFile, there is the attribute OutputOptions to specify
parameters for some of the export formats. The admissible value for this
attribute is a list of equations

5-164

Save and Export Pictures

OutputOptions = [<ReduceTo256Colors = b >,
<DotsPerInch = n1>, <Quality =
n2>, <JPEGMode = n3>, <EPSMode
= n4>, <AVIMode = n5>, <WMFMode
= n6>, <FramesPerSecond = n7>,
<PlotAt = l1>]

Each entry of the list is optional. The parameters are:

b – TRUE or FALSE. Has an effect for export to some raster
formats only. With TRUE, only 256 different colors are
stored in the raster file. The default value is FALSE.

n1 – a positive integer setting the resolution in dpi (dots per
inch). Has an effect for export to raster formats only. The
default value depends on the hardware.

n2 – one of the integers 1, 2, …, 100. This integer represents a
percentage value determining the quality of the export.
Has an effect for jpg, 3D eps, 3D wmf, and avi export only.
The default value is 75.

n3 – 0, 1, or 2. Has an effect for jpg export only. The
flag 0 represents the jpg mode ‘Baseline Sequential,’
1 represents ‘Progressive,’ 2 represents ‘Sequential
Optimized.’ The default value is 0.

n4 – 0 or 1. Has an effect for eps export only. The flag
0 represents the eps mode ‘Painter’s Algorithm,’ 1
represents ‘BSP Tree Algorithm.’ The default value is 0.

n5 – 0, 1 or 2. Has an effect for avi export only. With 0,
the ‘Microsoft Video 1 Codec’ is used. With 1, the
‘Uncompressed Single Frame Codec’ is used. With 2, the
‘Radius Cinepak Codec’ is used. The default value is 0.

n6 – 0, 1 or 2. Has an effect for wmf export only. With 0,
the ‘Painter’s Algorithm’ is used. With 1, the ‘BSP Tree
Algorithm’ is used. With 2, a ‘embedded bitmap’ is
created. The default value is 0.

5-165

5 Graphics and Animations

n7 – a positive integer setting the frames per second for the
avi to be generated. Has an effect for avi export only. The
default value is 15.

l1 – a list of real values between TimeBegin and TimeEnd
which determines the times at which pictures should be
saved from an animation.

5-166

Import Pictures

Import Pictures
MuPAD does not provide for many tools to import standard graphical vector
formats, yet. Presently, the only supported vector type is the stl format,
popular in Stereo Lithography, which encodes 3D surfaces. It can be imported
via the routine plot::SurfaceSTL.

In contrast to graphical vector formats, there are many standard bitmap
formats such as bmp, gif, jpg, ppm etc. that can be imported. One can read
such a file via import::readbitmap, thus creating a MuPAD array of RGB
color values that can be manipulated at will. In particular, it can be fed into
the routine plot::Raster which creates an object that can be used in any 2D
MuPAD plot. Note, however, that the import of bitmap data consumes a lot of
memory, i.e., only reasonably small bitmaps (up to a few hundred pixels in
each direction) should be processed.

In the following example, we plot the probability density function and the
cumulative density function of the standard normal (“Gaussian”) distribution.
Paying tribute to Carl Friedrich Gauss, we wish to display his picture in this
plot. Assume that we have his picture as a ppm bitmap file “Gauss.ppm.” We
import the file via import::readbitmap that provides us with the width and
height in pixels and the color data:
[width, height, gauss] := import::readbitmap("Gauss.ppm"):We have to
use Scaling = Constrained to preserve the aspect ratio of the image.
Unfortunately, this setting is not appropriate for the function plots. So we
use two different scenes that are positioned via Layout = Relative in one
canvas (see section Layout of Canvas and Scenes).

The first scene plots the two functions using the default setting Scaling =
Unconstrained for function plots. With the sizes Width = 1, Height = 1,
representing fractions of the canvas size, this scene fills the whole canvas.

The second scene is given a width and height of approximately the desired
magnitude. It uses Scaling = Constrained to get the aspect ratio right,
automatically. With the attributes Bottom and Left, the lower left corner of
Gauss’ image is moved to an appropriate point of the canvas:
pdf := stats::normalPDF(0, 1): cdf := stats::normalCDF(0, 1):
plot(plot::Scene2d(plot::Function2d(pdf(x), x = -4..7), plot::Function2d(cdf(x), x
= -4..7), Width = 1, Height = 1), plot::Scene2d(plot::Raster(gauss), Scaling =

5-167

5 Graphics and Animations

Constrained, Width = 0.3, Height = 0.6, Bottom = 0.25, Left = 0.6, BorderWidth
= 0.5*unit::mm, Footer = "C.F. Gauss", FooterFont = [8]), Layout = Relative):

5-168

Cameras in 3D

Cameras in 3D
The MuPAD 3D graphics model includes an observer at a specific position,
pointing a camera with a lens of a specific opening angle to some specific focal
point. The specific parameters “position”, “angle”, and “focal point” determine
the picture that the camera will take.

When a 3D picture is created in MuPAD, a camera with an appropriate
default lens is positioned automatically. Its focal point is chosen as the center
of the graphical scene. The interactive viewer allows to rotate the scene
which, in fact, is implemented internally as a change of the camera position.
Also interactive zooming in and zooming out is realized by moving the camera
closer to or farther away from the scene.

Apart from interactive camera motions, the perspective of a 3D picture can
also be set in the calls generating the plot. One way is to specify the direction
from which the camera is pointing towards the scene. This is done via the
attribute CameraDirection:
plot(plot::Function3d(sin(x + y^3), x = -1..1, y = -1..1), CameraDirection =
[-25, 20, 30]):

plot(plot::Function3d(sin(x + y^3), x = -1..1, y = -1..1), CameraDirection =
[10, -40, 10]):

5-169

5 Graphics and Animations

In these calls, the position of the camera is not fully specified by
CameraDirection. This attribute just requests the camera to be placed at
some large distance from the scene along the ray in the direction given by the
attribute. The actual distance from the scene is determined automatically to
let the graphical scene fill the picture optimally.

For a full specification of the perspective, there are camera objects of type
plot::Camera that allow to specify the position of the camera, its focal point
and the opening angle of its lens:
position := [-5, -10, 5]: focalpoint := [0, 0, 0]: angle := PI/12: camera :=
plot::Camera(position, focalpoint, angle):This camera can be passed like any
graphical object to the plot command generating the scene. Once a camera
object is specified in a graphical scene, it determines the view. No “automatic
camera” is used:
plot(plot::Function3d(sin(x + y^3), x = -1..1, y = -1..1), camera):

5-170

Cameras in 3D

Camera objects can be animated:
camera := plot::Camera([3*cos(a), 3*sin(a), 1 + cos(2*a)], [0, 0, 0], PI/3, a =
0..2*PI, Frames = 100):Inserting the animated camera in a graphical scene,
we obtain an animated plot simulating a “flight around the scene”:
plot(plot::Function3d(sin(x + y^3), x = -1..1, y = -1..1), camera):

In fact, several cameras can be installed simultaneously in a scene:
camera1 := plot::Camera([3*cos(a), 3*sin(a), 1 + cos(2*a)], [0, 0, 0], PI/3,
a = 0..2*PI, Name = "Camera 1"): camera2 := plot::Camera([2*cos(a),

5-171

5 Graphics and Animations

2*sin(a), 2 + cos(2*a)], [0, 0, 0], PI/3, a = 0..2*PI, Name = "Camera 2"):
plot(plot::Function3d(sin(x + y^3), x = -1..1, y = -1..1), camera1, camera2):

Per default, the first camera produces the view rendered. After
clicking on another camera in the object browser of the viewer (see
section Viewer, Browser, and Inspector: Interactive Manipulation),
the selected camera takes over and the new view is shown:

5-172

Cameras in 3D

Next, we have a look at a more appealing example: the so-called “Lorenz
attractor.” The Lorenz ODE is the system

(d)/(dt) * matrix([[x], [y], [z]])=matrix([[p*fenced(y-x)], [-x*z+r*x-y], [x*y-b*z]])

5-173

5 Graphics and Animations

with fixed parameters p, r, b. As a dynamic system for Y = [x, y, z], we have to
solve the ODE (dY/dt=f(t, Y)) with the following vector field:
f := proc(t, Y) local x, y, z; begin [x, y, z] := Y: [p*(y - x), -x*z + r*x - y, x*y -
b*z] end_proc:Consider the following parameters and the following initial
condition Y0:
p := 10: r := 28: b := 1: Y0 := [1, 1, 1]:The routine plot::Ode3d serves for
generating a graphical 3D solution of a dynamic system. It solves the ODE
numerically and generates graphical data from the numerical mesh. The
plot data are specified by the user via “generators” (procedures) that map a
solution point (t, Y) to a point (x, y, z) in 3D.

The following generator Gxyz produces a 3D phase plot of the solution. The
generator Gyz projects the solution curve to the (y, z) plane with x = - 20; the
generator Gxz projects the solution curve to the (x, z) plane with y = - 20; the
generator Gxy projects the solution curve to the (x, y) plane with z = 0:
Gxyz := (t, Y) -> Y: Gyz := (t, Y) -> [-20, Y[2], Y[3]]: Gxz := (t, Y) -> [Y[1],
-20, Y[3]]: Gxy := (t, Y) -> [Y[1], Y[2], 0]:With these generators, we create
a 3D plot object consisting of the phase curve and its projections. The
following command calls the numerical solver numeric::odesolve to produce
the graphical data. It takes about half a minute on a 1 GHz computer:
object := plot::Ode3d(f, [i/10 $ i=1..500], Y0, [Gxyz, Style = Splines, Color
= RGB::Red], [Gyz, Style = Splines, Color = RGB::LightGrey], [Gxz,
Style = Splines, Color = RGB::LightGrey], [Gxy, Style = Splines, Color =
RGB::LightGrey]):We define an animated camera moving around the scene:
camera := plot::Camera([-1 + 100*cos(a), 6 + 100*sin(a), 120], [-1, 6, 25], PI/6,
a = 0..2*PI, Frames = 120):The following plot call also takes about half a
minute on a 1 GHz computer:
plot(object, camera, Axes = Boxed, TicksNumber = Low):

5-174

Cameras in 3D

Next, we wish to fly along the Lorenz attractor. We cannot use plot::Ode3d,
because we need access to the numerical data of the attractor to build
a suitable animated camera object. We use the numerical ODE solver
numeric::odesolve2 and compute a list of numerical sample points on the
Lorenz attractor. This takes about half a minute on a 1 GHz computer:
Y := numeric::odesolve2(f, 0, Y0, RememberLast): timemesh := [i/50 $ i =
0..2000]: Y := [Y(t) $ t in timemesh]:Similar to the picture above, we define a
box around the attractor with the projections of the solution curve:
box := [-15, 20, -20, 26, 1, 50]: Yyz := map(Y, pt -> [box[1], pt[2], pt[3]]):
Yxy := map(Y, pt -> [pt[1], pt[2], box[5]]): Yxz := map(Y, pt -> [pt[1], box[3],
pt[3]]):We create an animated camera using an animation parameter a that
corresponds to the index of the list of numerical sample points. The following
procedure returns the i-th coordinate (i = 1, 2, 3) of the a-th point in the list
of sample points:
Point := proc(a, i) begin if domtype(float(a)) <> DOM_FLOAT then
procname(args()); else Y[round(a)][i]; end_if; end_proc:In the a-th frame
of the animation, the camera is positioned at the a-th sample point of the
Lorenz attractor, pointing toward the next sample point. Setting TimeRange
= 0..n/10, the camera visits about 10 points per second:
n := nops(timemesh) - 1: plot(plot::Scene3d(plot::Camera([Point(a, i) $ i =
1..3], [Point(a + 1, i) $ i = 1..3], PI/4, a = 1..n, Frames = n, TimeRange =
0..n/10), plot::Polygon3d(Y, LineColor = RGB::Red, PointsVisible = TRUE),
plot::Polygon3d(Yxy, LineColor = RGB::DimGrey), plot::Polygon3d(Yxz,
LineColor = RGB::DimGrey), plot::Polygon3d(Yyz, LineColor =

5-175

5 Graphics and Animations

RGB::DimGrey), plot::Box(box[1]..box[2], box[3]..box[4], box[5]..box[6],
LineColor = RGB::Black, Filled = TRUE, FillColor = RGB::Grey.[0.1]),
BackgroundStyle = Flat)):

5-176

Possible Strange Effects in 3D

Possible Strange Effects in 3D
Starting with the MuPAD Release 3.0, the rendering engine for 3D plots uses
the OpenGL library. The OpenGL is a widely used standard graphics library
and (almost) any computer has appropriate drivers installed in its system.

By default, the MuPAD Graphics Tool uses a software OpenGL driver
provided by the operating system. Depending on the graphics card of your
machine, you may also have further OpenGL drivers on your system, maybe
using hardware support to accelerate OpenGL. (On most Apple Macintosh
machines, no software OpenGL is available. MuPAD uses “accellerated”
OpenGL on these machines automatically.)

The MuPAD 3D graphics was written and tested using certain standard
OpenGL drivers. The numerous drivers available on the market have
different rendering quality and differ slightly which may lead to some
unexpected graphical effects on your machine.

After clicking on a 3D plot, a “Help” menu is visible in the MuPAD notebook
interface. The item “OpenGL Info …” provides the information which OpenGL
driver you are currently using. By default, MuPAD uses the software driver
provided by the operating system, indicated as “Renderer: GDI Generic”
on Microsoft Windows, “Apple Software Renderer” on Macintosh systems
with software OpenGL, and “Renderer: Mesa GLX Indirect” on a typical
Linux system, followed by a line “Direct: No” to indicate that no hardware
acceleration is used. You also get the information how many light sources and
how many clipping planes this driver supports.

If you wish to switch to another driver, use the item “Configure …” of the
“View” menu. (“Preferences …” of the “MuPAD” menu on the Macintosh.)
Picking “User Interface” on the left, you get a dialog that allows to enable
“accelerated” OpenGL using hardware drivers for your graphics card (if
installed).

If you encounter strange graphical effects in 3D, we recommend to use the
menu item “Help”/“OpenGL Info …” to check which OpenGL driver you are
currently using. Switch to the alternative driver via “View”/“Configure …”

5-177

5 Graphics and Animations

5-178

6

Quick Reference

6 Quick Reference

Glossary
This glossary explains some of the terms that are used throughout the
MuPAD documentation.

arithmetical expression Syntactically, this is an object of
Type::Arithmetical. In particular,
this type includes numbers,
identifiers and expressions of
domain type DOM_EXPR.

domain The phrase “domain” is synonymous
with “data type.” Every MuPAD
object has a data type referred to as
its “domain type.” It may be queried
via the function domtype.

There are “basic domains” provided
by the system kernel. These include
various types of numbers, sets,
lists, arrays, hfarrays, tables,
expressions, polynomials etc. The
documentation refers to these
data types as “kernel domains.”
The name of the kernel domains
are of the form DOM_XXX (e.g.,
DOM_INT, DOM_SET,DOM_LIST,
DOM_ARRAY, DOM_HFARRAY,
DOM_TABLE, etc.).
In addition, the MuPAD
programming language allows
to introduce new data types via the
keyword domain or the function
newDomain. The MuPAD library
provides many such domains.
For example, series expansions,
matrices, piecewise defined objects
etc. are domains implemented
in the MuPAD language. The
documentation refers to such data
types as “library domains.” In

6-2

Glossary

particular, the library Dom provides
a variety of predefined data types
such as matrices, residue classes,
intervals etc.
See DOM_DOMAIN for general
explanations on data types. Here
you also find some simple examples
demonstrating how the user can
implement her own domains.

domain element The phrase “x is an element of the
domain d” is synonymous with “x is
of domain type d,” i.e., “domtype(x)
= d”. In many cases, the help
pages refer to “domain elements”
as objects of library domains,
i.e., the corresponding domain
is implemented in the MuPAD
language.

domain type The domain type of an object is the
data type of the object. It may be
queried via domtype.

flattening Sequences such as a := (x, y)
or b := (u, v) consist of objects
separated by commas. Several
sequences may be combined to
a longer sequence: (a, b) is
“flattened” to the sequence (x, y,
u, v) consisting of 4 elements. Most
functions flatten their arguments,
i.e., the call f(a, b) is interpreted
as the call f(x, y, u, v) with 4
arguments. Note, however, that
some functions (e.g., the operand
function op) do not flatten their
arguments: op(a, 1) is a call with
2 arguments.

The concept of flattening also applies
to some functions such as max,

6-3

6 Quick Reference

where it refers to simplification
rules such as max(a, max(b, c)) =
max(a, b, c).

function Typically, functions are
represented by a procedure
or a function environment.
Also functional expressions
such as sin@exp + id^2:(x) ->
sin(exp(x))+x^2
represent functions. Also numbers
can be used as (constant) functions.
For example, the call 3(x) yields the
number 3 for any argument x.

number A number may be an integer (of
type DOM_INT), or a rational
number (of type DOM_RAT), or a
real floating-point number (of type
DOM_FLOAT), or a complex number
(of type DOM_COMPLEX).
The type DOM_COMPLEX
encompasses the Gaussian integers
such as 3 + 7*I, the Gaussian
rationals such as 3/4 + 7/4*I, and
complex floating point numbers such
as 1.2 + 3.4*I.

numerical expression This is an expression that does
not contain any symbolic variable
apart from the special constants
PI, E, EULER, and CATALAN.
A numerical expression such as
I^(1/3) + sqrt(PI)*exp(17) is
an exact representation of a real
or a complex number; it may be
composed of numbers, radicals and
calls to special functions. It may
be converted to a real or complex
floating-point number via float.

6-4

Glossary

overloading The help page of a system function
only documents the admissible
arguments that are of some basic
type provided by the MuPAD kernel.
If the system function f, say, is
declared as “overloadable,” the user
may extend its functionality. He
can implement his own domain
or function environment with a
corresponding slot "f". An element
of this domain is then accepted by
the system function f which calls the
user-defined slot function.

polynomial Syntactically, a polynomial such as
poly(x^2 + 2, [x]) is an object
of type DOM_POLY. It must be
created by a call to the function poly.
Most functions that operate on such
polynomials are overloaded by other
polynomial domains of the MuPAD
library.

polynomial expression This is an arithmetical expression
in which symbolic variables and
combinations of such variables only
enter via positive integer powers.
Examples are x^2 + 2 or x*y + (z
+ 1)^2.

rational expression This is an arithmetical expression
in which symbolic variables and
combinations of such variables only
enter via integer powers. Examples
are x^(-2) + x + 2 or x*y +
1/(z + 1)^2. Every polynomial
expression is also a rational
expression, but the two previous
expressions are not polynomial
expressions.

6-5

6 Quick Reference

6-6

7

More Information About
Some of the MuPAD
Libraries

• “Abstract Data Types Library” on page 7-2

• “Axioms” on page 7-4

• “Categories” on page 7-5

• “Combinatorics” on page 7-7

• “Functional Programming” on page 7-8

• “Gröbner bases” on page 7-10

• “The import Library” on page 7-11

• “Integration Utilities” on page 7-12

• “Linear Algebra Library” on page 7-16

• “Linear Optimization” on page 7-22

• “The misc Library” on page 7-23

• “Numeric Algorithms Library” on page 7-24

• “Orthogonal Polynomials” on page 7-25

• “Properties and Assumptions” on page 7-26

• “Typeset Symbols” on page 7-31

• “Type Checking and Mathematical Properties” on page 7-40

7 More Information About Some of the MuPAD® Libraries

Abstract Data Types Library
This library contains MuPAD implementations of abstract data types.

Every instance of these data types is realized as a MuPAD domain.

The usage of this library is completely different from the rest of the MuPAD
library: An object of an adt data type is a domain, so that by using the
methods described here, you change the object itself as a side-effect. No
assignment is necessary to keep your changes. Compare this to usual MuPAD
functions, where you have to always use, e.g.,
f := transform::fourier(f, x, y)The data types are implemented completely
within the MuPAD programming language. Keeping this in mind, the
performance is excellent.

Example
We create an object of the abstract data type “stack” and perform the standard
operations.

The stack will be initialized with the characters "a", "b" and "c":
S:= adt::Stack("a", "b", "c")Stack1

To handle the stack, it must be assigned to an identifier.

The depth (number of elements) and the top of the stack:
S::depth(), S::top()3, "c"

Push an element, control the depth and then revert the stack. You can see
that S is changed, e.g., when the method "push" is called:
S::push("d"): S::depth(), S::top()4, "d"

7-2

Abstract Data Types Library

The stack is now reverted (although this is not a standard operation for
abstract stacks, it comes in handy in many uses). After that, we pop all
elements until the stack is empty:
S::reverse():while not S::empty() do print(S::pop()) end_while; S::depth(),
S::top()"a"

"b"

"c"

"d"

0, FAIL

7-3

7 More Information About Some of the MuPAD® Libraries

Axioms
In MuPAD, an algebraic structure may be represented by a domain.
Parameterized domains may be defined by domain constructors. Many
domain constructors are defined in the library package Dom.

Domains which have a similar mathematical structure may be members
of a category. A category adds a level of abstraction because it postulates
conditions which must hold for a domain in order to become a valid member of
the category. Operations may be defined for all members of a category based
on the assumptions and basic operations of that category, as long as they
make no assumptions about the representation of the elements of the domain
that belong to the category. Categories may also depend on parameters and
are created by category constructors. The category constructors of the MuPAD
library are contained in the library package Cat.

Attributes of domains and categories are defined in terms of so-called axioms.
Axioms state properties of domains or categories. They may also depend on
parameters and are defined by axiom constructors.

Please note that most axioms of the domains and categories defined in the
MuPAD library are not stated explicitly. Only axioms which are not implied
by the definition of a category are stated explicitly. The category of groups for
example has no axiom stating that the multiplication is invertible because
that is implied by the definition of a group. Most axioms defined in this
package are of technical (i.e. algorithmic nature).

Bibliography
K. Drescher. Axioms, Categories and Domains. Automath Technical Report
No. 1, Univ. GH Paderborn 1995.

7-4

Categories

Categories

In this section...

“Introduction” on page 7-5

“Category Constructors” on page 7-6

“Bibliography” on page 7-6

Introduction
In MuPAD, an algebraic structure may be represented by a domain.
Parametrized domains may be defined by domain constructors. Many domain
constructors are defined in the library package Dom.

Domains which have a similar mathematical structure may be members
of a category. A category adds a level of abstraction because it postulates
conditions which must hold for a domain in order to become a valid member of
the category. Operations may be defined for all members of a category based
on the assumptions and basic operations of that category, as long as they
make no assumptions about the representation of the elements of the domains
that belong to the category. Categories may also depend on parameters and
are created by category constructors.

Attributes of domains and categories are defined in terms of so-called axioms.
Axioms state properties of domains or categories.

This paper describes the category constructors which are part of the Cat
library package.

The categories defined so far in general follow the conventions of algebra.
There are some properties of the categories which differ from the ‘classical’
nonconstructive theory of algebra because these properties are not
constructive or can not be constructed efficiently.

The category hierarchy of the Cat package is quite similar to (part of) the
category hierarchy of AXIOM JeSu (see DaTr for a description of the basic
categories of Scratchpad, the predecessor of AXIOM).

7-5

7 More Information About Some of the MuPAD® Libraries

Category Constructors
For each category constructor only the entries defined directly by the
constructor are described. Entries which are inherited from super-categories
are not described.

Please note that most axioms of the categories are not stated explicitly. Only
axioms which are not implied by the definition of a category are stated
explicitly. The category of groups for example has no axiom stating that the
multiplication is invertible because that is implied by the definition of a group.

Bibliography
J.H. Davenport and B.M. Trager. Scratchpad’s View of Algebra I: Basic
Commutative Algebra. DISCO ‘90 (Springer LNCS 429, ed. A. Miola):40–54,
1990.

K. Drescher. Axioms, Categories and Domains. Automath Technical Report
No. 1, Univ. GH Paderborn 1995.

R.D. Jenks and R.S. Sutor. AXIOM, The Scientific Computation System.
Springer, 1992.

7-6

Combinatorics

Combinatorics
The combinat library provides combinatorial functions.

Many more combinatorial functions can be found in the algebraic
combinatorics contribution package which can be downloaded at
http://sourceforge.net/. Note: Computed results may differ after an external
package is installed compared to those computed with the original software
installation.

The library functions are called using the library name combinat and the
name of the function. E.g., use
combinat::bell(5)to compute the 5-th Bell number. This mechanism avoids
naming conflicts with other library functions.

If this is found to be inconvenient, then the routines of the combinat library
may be exported via use. E.g., after calling
use(combinat, bell)the function combinat::bell may be called directly:
bell(5)All routines of the combinat library are exported simultaneously by
use(combinat)The functions available in the combinat library can be listed
using
info(combinat)

7-7

http://sourceforge.net/

7 More Information About Some of the MuPAD® Libraries

Functional Programming
The functions of the fp package are higher order functions and other utilities
useful for functional programming. Some other functions useful for functional
programming are already contained in the MuPAD standard library, like
map, select and zip.

For a more detailed description of concepts like “higher order function”,
“currying” and “fixed points” see for example the textbook “Computability,
Complexity and Languages” by M. Davis, R. Sigal, and E. J. Weyuker,
Academic Press (1994).

Most of the functions of the fp package take functions as arguments and
return other functions. In this context a function may be a functional
environment, a procedure, a kernel function or any other object which may
be regarded as a function (i.e. applied to arguments). Note that almost all
MuPAD objects are functions in this sense.

The rational integer 2/3 for example may be regarded as a constant function
returning the value 2/3:
2/3(x)2/3

The list [sin, cos, 2/3] may be regarded as a unary function mapping x
to [sin(x), cos(x), 2/3]:
[sin, cos, 2/3](x)[sin(x), cos(x), 2/3]

The library functions are called in the form fp::fixedpt(f). By this
mechanism, naming conflicts with other library functions are avoided. If this
is found to be too awkward the methods of the fp package may be exported.
After calling use(fp, fixedpt) the function fixedpt is also directly
available, i.e. fixedpt(f) may also be called. If a variable with the name
fixedpt already exists then use raises an error. The value of the identifier

7-8

Functional Programming

fixedpt must then be deleted in order to be exported. With use(fp) all
methods of the fp package are exported.

7-9

7 More Information About Some of the MuPAD® Libraries

Gröbner bases
The groebner package contains some functions dealing with ideals of
multivariate polynomial rings over a field. In particular, Gröbner bases of
such ideals can be computed.

An ideal is given by a list of generators. They must all be polynomials of the
same type, i.e., for all of them, the coefficient ring (third operand) and list of
unknowns (second operand) must be the same. The generators may also be
expressions (all of them must be, if any of them is).

Gröbner bases and related notions depend on the monomial ordering (also
called term ordering) under consideration. MuPAD knows the following
orderings:

• the lexicographical ordering, denoted by the identifier LexOrder.

• the ordering by total degree, with the lexicographical ordering used as a
tie-break; it is denoted by the identifier DegreeOrder.

• the ordering by total degree, with the opposite of the lexicographical
ordering for the reverse order of unknowns used as a tie-break (i.e.,
the monomial that is lexicographically smaller if the order of variables
is reversed, is considered the bigger one); this one is denoted by
DegInvLexOrder.

• user-defined orderings. They constitute a domain Dom::MonomOrdering
of their own.

Orderings always refer to the order of the unknowns of the polynomial; e.g.,
x is lexicographically bigger than y in F[x, y], but smaller than y when
regarded as an element of F[y, x].

7-10

The import Library

The import Library
The import library provides functions for importing external data into
MuPAD.

The package functions are called using the package name import and the
name of the function. E.g., use
import::readdata("datafile")for reading external data from the file ‘datafile.’
This mechanism avoids naming conflicts with other library functions. If this
is found to be inconvenient, then the routines of the import package may be
exported via use. E.g., after calling
use(import, readdata)the function import::readdata may be called directly:
readdata("datafile")All routines of the import package are exported
simultaneously by
use(import)The functions available in the import library can be listed with:
info(import)

7-11

7 More Information About Some of the MuPAD® Libraries

Integration Utilities

In this section...

“First steps” on page 7-12

“Integration by parts and by change of variables” on page 7-14

This library contains functions for manipulating and solving integrals.
Currently there are only described interfaces for the well-known integration
methods change of variables and integration by parts. In addition, a function
for integrating over arbitrary subsets of the real numbers exists. In future
versions more interfaces will be added.

First steps
Integration is the process inverse to differentiation. Any function F in the

variable x with diff(F,x)=f is an integral of f:
f := cos(x)*exp(sin(x))exp(sin(x))*cos(x)

F := int(f,x)exp(sin(x))

diff(F,x)exp(sin(x))*cos(x)

No constant is added to the integral or, in other words, a special integration
constant is chosen automatically. With MuPAD it is possible to determine
integrals of elementary functions, of many special functions and, with some
restrictions, of algebraic functions:
int(sin(x)^4*cos(x),x)sin(x)^5/5

7-12

Integration Utilities

int(1/(2+cos(x)),x)(2*sqrt(3)*(x/2 - arctan(tan(x/2))))/3 +
(2*sqrt(3)*arctan((sqrt(3)*tan(x/2))/3))/3

int(exp(-a*x^2),x)(sqrt(PI)*erf(sqrt(a)*x))/(2*sqrt(a))

int(x^2/sqrt(1-5*x^3),x)-(2*sqrt(1 - 5*x^3))/15

normal(simplify(diff(%,x)))x^2/sqrt(1 - 5*x^3)

It is also possible to compute definite and multiple integrals:
int(exp(-x^2)*ln(x)^2, x=0..infinity)(sqrt(PI)*(8*EULER*ln(2) + 2*EULER^2
+ PI^2 + 8*ln(2)^2))/16

int(sin(x)*dirac(x+2)-heaviside(x+3)/x, x=1..4)-ln(4)

int(int(int(1, z=0..c*(1-x/a-y/b)), y=0..b*(1-x/a)), x=0..a)(a*b*c)/6

7-13

7 More Information About Some of the MuPAD® Libraries

Integration by parts and by change of variables
Typical applications for the rule of integration by parts

int(u’(x)*v(x), x) = u(x)*v(x) - int(u(x)*v’(x), x)

are integrals of the form int(p(x)*cos(x), x) where p(x) is
polynomial. Thereby one has to use the rule in the way that the polynomial is
differentiated. Thus one has to choose u’(x)=cos(x) .
intlib::byparts(hold(int)((x-1)*cos(x),x),cos(x))sin(x)*(x - 1) - int(sin(x), x)

In particular with the guess u’(x)=1 it is possible to compute a lot of
the well-known standard integrals, like e.g. int(arcsin(x), x) .
intlib::byparts(hold(int)(arcsin(x),x),1)x*arcsin(x) - int(x/sqrt(1 - x^2), x)

In order to determine the remaining integral one may use the method change
of variable

int(f(g(x))*g’(x), x) = F(g(x))+c

with g(x) = 1 - x2.
F:=intlib::changevar(hold(int)(x/sqrt(1-x^2),x), t=1-x^2)int(-1/(2*sqrt(t)), t)

7-14

Integration Utilities

Via backsubstition into the solved integral F one gets the requested result.
hold(int)(arcsin(x),x) = x*arcsin(x)-subs(eval(F),t=1-x^2)int(arcsin(x), x) =
x*arcsin(x) + sqrt(1 - x^2)

Applying change of variable with the integrator is problematic, since it may
occur that the integrator will never terminate. For that reason this rule is
used within the integrator only on certain secure places. On the other hand,
this may also lead to the fact that some integrals cannot be solved directly.
f:= sqrt(x)*sqrt(1+sqrt(x)): int(f,x)int(sqrt(x)*sqrt(sqrt(x) + 1), x)

eval(intlib::changevar(hold(int)(f,x),t=sqrt(x))) | t=sqrt(x)-(4*(sqrt(x) +
1)^(3/2)*(42*sqrt(x) - 15*(sqrt(x) + 1)^2 + 7))/105

7-15

7 More Information About Some of the MuPAD® Libraries

Linear Algebra Library

In this section...

“Introduction” on page 7-16

“Data Types for Matrices and Vectors” on page 7-17

Introduction
An overview of all the available functions can be obtained by using the
MuPAD function info. Here we see an extract of the functions available in the
linear algebra library (we do not state the whole output generated by the call
info(linalg), since the library contains more than 40 different functions):
info(linalg)Library ’linalg’: the linear algebra package -- Interface:
linalg::addCol, linalg::addRow, linalg::adjoint, linalg::angle, linalg::basis,
linalg::charmat, linalg::charpoly, linalg::col, ... After being exported, library
functions can also be used by their short notation. The function call
use(linalg) exports all functions of linalg. After that one can use the
function name gaussElim instead of linalg::gaussElim, for example.

Please note that user-defined procedures that use functions of the library
linalg should always use the long notation linalg::functionname, in order
to make sure that the unambiguity of the function name is guaranteed.

The easiest way to define a matrix A is using the command matrix. The
following defines a 2 2 matrix:
A := matrix([[1, 2], [3, 2]])matrix([[1, 2], [3, 2]])

Now, you can add or multiply matrices using the standard arithmetical
operators of MuPAD:
A * A, 2 * A, 1/Amatrix([[7, 6], [9, 10]]), matrix([[2, 4], [6, 4]]), matrix([[-1/2,
1/2], [3/4, -1/4]])

7-16

Linear Algebra Library

Further, you can use functions of the linalg library:
linalg::det(A)-4

The domain type returned by matrix is Dom::Matrix():
domtype(A)Dom::Matrix()

which is introduced in the following section.

Data Types for Matrices and Vectors
The library linalg is based on the domains Dom::Matrix and
Dom::SquareMatrix. These constructors enable the user to define
matrices and they offer matrix arithmetic and several functions for matrix
manipulation.

A domain created by Dom::Matrix represents matrices of arbitrary rows
and columns over a specified ring. The domain constructor Dom::Matrix
expects a coefficient ring of category Cat::Rng (a ring without unit) as
argument. If no argument is given, the domain of matrices is created that
represents matrices over the field of arithmetical expressions, i.e., the domain
Dom::ExpressionField().

Be careful with calculations with matrices over this coefficient domain,
because their entries usually do not have a unique representation (e.g., there
is more than one representation of zero). You can normalize the components
of such a matrix A with the command map(A, normal).

The library Dom offers standard coefficient domains, such as the field of
rational numbers (Dom::Rational), the ring of integers (Dom::Integer), the
residue classes of integers (Dom::IntegerMod(n)) for an integer n, or even

7-17

7 More Information About Some of the MuPAD® Libraries

the rings of polynomials (such as Dom::DistributedPolynomial(ind,R) or
Dom::Polynomial(R), where ind is the list of variables and R is the coefficient
ring).

A domain created by the domain constructor Dom::SquareMatrix
represents the ring of square matrices over a specified coefficient domain.
Dom::SquareMatrix expects the number of rows of the square matrices and
optionally a coefficient ring of category Cat::Rng.

There are several possibilities to define matrices of a domain created by
Dom::Matrix or Dom::SquareMatrix. A matrix can be created by giving a
two-dimensional array, a list of the matrix components, or a function that
generates the matrix components:
delete a, b, c, d: A := matrix([[a, b], [c, d]])matrix([[a, b], [c, d]])

The command matrix actually is an abbreviation for the domain
Dom::Matrix().

To create diagonal matrices one should use the option Diagonal (the third
argument of matrix is either a function or a list):
B := matrix(2, 2, [2, -2], Diagonal)matrix([[2, 0], [0, -2]])

The following two examples show the meaning of the third argument:
delete x: matrix(2, 2, () -> x), matrix(2, 2, x)matrix([[x, x], [x, x]]), matrix([[x(1,
1), x(1, 2)], [x(2, 1), x(2, 2)]])

The MuPAD arithmetical operators are used to perform matrix arithmetic:
A * B - 2 * Bmatrix([[2*a - 4, -2*b], [2*c, 4 - 2*d]])

7-18

Linear Algebra Library

1/Amatrix([[d/(a*d - b*c), -b/(a*d - b*c)], [-c/(a*d - b*c), a/(a*d - b*c)]])

Next we create the 2 2 generalized Hilbert matrix (see also linalg::hilbert) as
a matrix of the ring of two-dimensional square matrices:
MatQ2 := Dom::SquareMatrix(2, Dom::Rational)Dom::SquareMatrix(2,
Dom::Rational)

H2 := MatQ2((i, j) -> 1/(i + j - 1))Dom::SquareMatrix(2, Dom::Rational)([[1,
1/2], [1/2, 1/3]])

A vector with n components is a 1 n matrix (a row vector) or a n 1 matrix (a
column vector).

The components of a matrix or a vector are accessed using the index operator,
i.e., A[i,j] returns the component of the row with index i and column with
index j.

The input A[i, j]:= x sets the (i, j)-th component of the matrix A to the
value of x.

The index operator can also be used to extract sub-matrices by giving ranges
of integers as its arguments:
A := Dom::Matrix(Dom::Integer)([[1, 2, 3], [4, 5, 6], [7, 8, 9]]
)Dom::Matrix(Dom::Integer)([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

7-19

7 More Information About Some of the MuPAD® Libraries

A[1..3, 1..2], A[3..3, 1..3]Dom::Matrix(Dom::Integer)([[1, 2], [4, 5], [7, 8]]),
Dom::Matrix(Dom::Integer)([[7, 8, 9]])

See also the function linalg::submatrix.

Remarks on Improving Runtime
The runtime of user-defined procedures that use functions of the linalg
library and methods of the constructors Dom::Matrix and Dom::SquareMatrix
can be considerably improved in certain cases.

1 Some of the functions of the linalg library correspond to certain methods
of the domain constructor Dom::Matrix in their name and functionality.
These functions are implemented by calling relevant methods of the
domain to that they belong, apart from additional argument checking.
These functions enable an user-friendly usage on the interactive level
after exporting.

However, in user-defined procedures the methods of the corresponding
domain should be used directly to avoid additionally calls of procedures.

For example standard matrix manipulation functions such as deleting,
extracting or swapping of rows and columns are defined as methods of the
domain constructors Dom::Matrix and Dom::SquareMatrix.

The method "gaussElim" offers a Gaussian elimination process for each
domain created by these constructors.

2 When creating a new matrix the method "new" is called. It converts each
component of the matrix explicitly into a component the component ring,
which may be time consuming.

However, matrices and vectors are often the results of computations,
whose components already are elements of the component ring. Thus, the

7-20

Linear Algebra Library

conversion of the entries is not necessary. To take this into account, the
domain constructors Dom::Matrix and Dom::SquareMatrix offer a method
"create" to define matrices in the usual way but without the conversion of
the components.

Please note that this method does not test its arguments. Thus it should
be used with caution.

3 A further possibility of achieving better runtimes using functions of linalg
or methods of the constructor Dom::Matrix is to store functions and
methods that are called more than once in local variables. This enables a
faster access of these functions and methods.

The following example shows how a user-defined procedure using functions of
linalg and methods of the domain constructor Dom::Matrix may look like.
It computes the adjoint of a square matrix defined over a commutative ring
(see Cat::CommutativeRing):
adjoint := proc(A) local n, R, i, j, a, Ai, Mat, // local variables to store often
used methods det, delRow, delCol, Rnegate; begin if args(0) <> 1 then
error("wrong number of arguments") end_if; Mat := A::dom; // the domain
of A R := Mat::coeffRing; // the component ring of A n := Mat::matdim(A); //
the dimension of A; faster than calling // ’linalg::matdim’! if testargs() then
if Mat::hasProp(Cat::Matrix) <> TRUE then error("expecting a matrix") elif
not R::hasProp(Cat::CommutativeRing) then error("expecting matrix over
a ’Cat::CommutativeRing’") elif n[1] <> n[2] then error("expecting a square
matrix") end_if end_if; // store often used methods in local variables: det :=
linalg::det; delRow := Mat::delRow; // faster than calling ’linalg::delRow’!
delCol := Mat::delCol; // faster than calling ’linalg::delCol’! Rnegate :=
R::_negate; // faster than using the ’-’ operator! n := Mat::matdim(A)[1]; //
faster than calling ’linalg::nrows’! a := array(1..n, 1..n); for i from 1 to n do Ai
:= delCol(A, i); for j from 1 to n do a[i, j] := det(delRow(Ai, j)); if i + j mod 2 = 1
then a[i, j] := Rnegate(a[i, j]) end_if end_for end_for; // create a new matrix:
use Mat::create instead of Mat::new // because the entries of the array are
already elements of R return(Mat::create(a)) end_proc:We give an example:
MatZ6 := Dom::Matrix(Dom::IntegerMod(6)): adjoint(MatZ6([[1, 5], [2,
4]]))Dom::Matrix(Dom::IntegerMod(6))([[-2, 1], [-2, 1]])

7-21

7 More Information About Some of the MuPAD® Libraries

Linear Optimization
The linopt library provides algorithms for linear and integer programming.
The routines in this library can be used in order to minimize and maximize
a linear function subject to the set of linear constraints. It is possible to get
only integer solutions. The routines for linear optimization are based on the
two phase simplex algorithm. The algorithm of Land-Doig is used to find
integer solutions.

The library functions are called using the library name linopt and the name
of the function. E.g., use
c := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 7*x + 4*y + 11*z <= 30}, - x +
y + 2*z, {x, y, z}]: linopt::maximize(c)[OPTIMAL, {x = 0, y = 49/8, z = 1/2}, 57/8]

to solve the linear optimization problem defined in the variable c. This
mechanism avoids naming conflicts with other library functions. If this is
found to be inconvenient, then the routines of the linopt package may be
exported via use. E.g., after calling
use(linopt, maximize):the function linopt::maximize may be called directly:
c := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 7*x + 4*y + 11*z <= 30}, - x +
y + 2*z, {x, y, z}]: maximize(c)[OPTIMAL, {x = 0, y = 49/8, z = 1/2}, 57/8]

All routines of the linopt package are exported simultaneously by
use(linopt):The functions available in the linopt library can be listed with:
unuse(linopt, maximize):info(linopt) Library ’linopt’: a package for
linear optimization -- Interface: linopt::Transparent, linopt::corners,
linopt::maximize, linopt::minimize, linopt::plot_data,

7-22

The misc Library

The misc Library
The misc library contains some miscellaneous utility functions.

The package functions are called using the package name misc and the name
of the function. E.g., use
myplus := misc::genassop(_plus, 0)to create your own n-ary plus operator.
(This is not really useful, since _plus is an n-ary operator, anyway.)

This mechanism avoids naming conflicts with other library functions. If this
is found to be inconvenient, then the routines of the misc package may be
exported via use. E.g., after calling
use(misc, genassop)the function misc::genassop may be called directly:
myplus := genassop(_plus, 0)All routines of the misc package are exported
simultaneously by
use(misc)The functions available in the misc library can be listened with:
info(misc)We would especially like to thank Raymond Manzoni for
contributing the function misc::pslq.

7-23

7 More Information About Some of the MuPAD® Libraries

Numeric Algorithms Library
The numeric package provides algorithms from various areas of numerical
mathematics.

The package functions are called using the package name numeric and the
name of the function. E.g., use
numeric::solve(equations, unknowns)to call the numerical solver. This
mechanism avoids naming conflicts with other library functions. If this
is found to be inconvenient, the routines of the numeric package may be
exported via use. E.g., after calling
use(numeric, fsolve)the function numeric::fsolve may be called directly:
fsolve(equations, unknowns)All routines of the numeric package are exported
simultaneously by
use(numeric)Note, however, that presently naming conflicts with the
functions indets, int, linsolve, rationalize, solve and sort of the standard
library exist. The corresponding functions of the numeric package are not
exported. Further, if the identifier fsolve, say, already has a value, then
use returns a warning and does not export numeric::fsolve. The value of
the identifier fsolve must be deleted before it can be exported successfully
from the numeric package.

7-24

Orthogonal Polynomials

Orthogonal Polynomials
The orthpoly package provides some standard orthogonal polynomials.

The package functions are called using the package name orthpoly and the
name of the function. E.g., use
orthpoly::legendre(5, x)to generate the fifth degree Legendre polynomial in
the indeterminate x. This mechanism avoids naming conflicts with other
library functions. If this is found to be inconvenient, then the routines of the
orthpoly package may be exported via use. E.g., after calling
use(orthpoly, legendre)the function orthpoly::legendre may be called
directly:
legendre(5, x)All routines of the orthpoly package are exported
simultaneously by
use(orthpoly)If the identifier legendre already has a value, then use returns
a warning and does not export orthpoly::legendre. The value of the
identifier legendre must be deleted before it can be exported successfully
from the orthpoly package.

7-25

7 More Information About Some of the MuPAD® Libraries

Properties and Assumptions

In this section...

“Properties of identifiers” on page 7-26

“All Properties” on page 7-27

Properties of identifiers
MuPAD offers the possibility to compute symbolically with identifiers.
sqrt(x^2)sqrt(x^2)

a^c*b^ca^c*b^c

Such expressions can only be simplified if restrictions about the possible
values of variables involved are known.

To denote such restrictions, MuPAD offers properties that can be set for an
identifier with the function assume. Most system functions take properties
into account while computing and simplifying.

Some examples of properties are Type::Real, Type::Positive, and Type::Integer.
Identifiers with these properties are treated as unknown real, positive or
integer numbers.
assume(x, Type::Real)Re(x), Im(x), simplify(sqrt(x^2))x, 0, abs(x)

The assumption assume(x > 0) has the same meaning as assume(x,
Type::Positive). It implies that x is a positive number.
assume(x > 0): sqrt(x^2)x

7-26

Properties and Assumptions

assume(x < 0): sqrt(x^2)-x

As the last example shows, with a new assumption the current properties of
an identifier are overwritten.

With the command assumeAlso, the current assumptions can be kept and
combined with other assumptions.

The identifier x should be integer:
assume(x, Type::Integer); getprop(x)Z_

x is restricted to be also positive:
assumeAlso(x > 0); getprop(x)Z_ intersect Dom::Interval([1], infinity)

delete x:

All Properties
There are four types of mathematical properties available in MuPAD:

• Basic number domains, such as the integers, the rational numbers, the real
numbers, the positive real numbers, or the complex numbers,

• intervals in basic number domains,

• residue classes of integers, and

• relations between an identifier and an arbitrary expression.

The following table contains all predefined classes of properties:

Basic Number Domains

Type::Complex C_

7-27

7 More Information About Some of the MuPAD® Libraries

Type::Even 2*Z_

Type::Imaginary R_ * I

Type::Integer Z_

Type::Negative R_[‘‘<0]

Type::NegInt Z_[‘‘<0]

Type::NegRat Q_[‘‘<0]

Type::NonNegative R_[‘‘>=0]

Type::NonNegInt Z_[‘‘>=0]

Type::NonNegRat Q_[‘‘>=0]

Type::NonZero C_ minus {0}

Type::Odd 2*Z_+1

Type::PosInt Z_[‘‘>0]

Type::Positive R_[‘‘>0]

Type::PosRat Q_[‘‘>0]

Type::Rational Q_

Type::Real R_

Type::Zero {0}

Intervals

Type::Interval(a,
b, T)

SubSet(x, T, a < x <
b)

Type::Interval([a],
b, T)

SubSet(x, T, a <= x <
b)

Type::Interval(a,
[b], T)

SubSet(x, T, a < x <=
b)

7-28

Properties and Assumptions

Type::Interval([a],
[b], T)

SubSet(x, T, a <= x <=
b)

a,b: expressions

T: basic number domain

Residue Classes

Type::Residue(a,
b)or

b + a

b* Type::Integer +
a

a,b: integers

Relations

= b {b}

<> b C_ minus {b}

< b R_[‘‘ < b]

<= b R_[‘‘ <= b]

> b R_[‘‘ > b]

>= b R_[‘‘ >= b]

b: expression

If T is a type specifier for a basic number domain, an interval, or a residue
class from the left column of this table, then assume(ex, T) attaches the
mathematical property “is an element of S” to the expression x, where S is
the corresponding set in the right column. Similarly, is(ex, T) checks
whether the expression ex belongs to the set S mathematically. The syntax
for relations is more intuitive: for example, assume(x < b) takes the relation
“is less than b” into account for all further calculations, and is(a < b) checks
whether the relation a < b holds true mathematically for the expressions
a and b.

7-29

7 More Information About Some of the MuPAD® Libraries

There are often several equivalent ways to specify a property: for example, >=
0, Type::NonNegative, and Type::Interval([0], infinity) are equivalent
properties. Similarly, Type::Odd is equivalent to Type::Residue(1, 2).

Note There are also members of the Type library that do not correspond to
mathematical properties, e.g., Type::ListOf.

The identifier x should be a real number between -1 and 1 including the
borders:
assume(x, Type::Interval([-1], [1]))The same property can be assumed by the
following calls. Both lines results in the same property:
assume(x >= -1): assumeAlso(x <= 1); assume(-1 <= x <= 1)getprop(2*x);
getprop(10*x^2)Dom::Interval([-2], [2])

Dom::Interval([0], [10])

In the next example the identifier x should be positive:
assume(x > 0)With a new assumption older assumptions containing the same
variables are overwritten. One can keep existing assumptions with using the
command assumeAlso, in this example the existing property is restricted,
when using assumeAlso. The combination of both assumptions leads to an
interval:
assumeAlso(x <= 10); getprop(x);Dom::Interval(0, [10])

delete x:

7-30

Typeset Symbols

Typeset Symbols

In this section...

“Greek Letters” on page 7-31

“Open Face Letters” on page 7-33

“Arrows” on page 7-33

“Operators” on page 7-34

“Comparison Operators” on page 7-35

“Other Symbols” on page 7-36

“Whitespaces” on page 7-37

“Braces” on page 7-37

“Punctuation Marks” on page 7-37

“Umlauts” on page 7-38

“Currency” on page 7-38

“Math Symbols” on page 7-39

Symbol provides access to typesetting symbols. All available symbols are
shown below, sorted in appropriate groups. The symbols can be accessed via
slots of Symbol (e.g. Symbol::alpha for the symbol α) or via function calls
(e.g. Symbol("alpha")). Some symbols can be accessed only via function
calls. For details, see Symbol::new.

Greek Letters

α alpha β beta

γ gamma δ delta

epsi, epsilon ε varepsilon, epsiv

ζ zeta η eta

θ theta thetasym,
thetav, vartheta

7-31

7 More Information About Some of the MuPAD® Libraries

ι iota κ kappa

λ lambda μ mu, micro

ν nu ξ xi

ο omicron π pi

ϖ varpi, piv ρ rho

σ sigma ς sigmaf, sigmav,
varsigma

τ tau υ upsilon, upsi

ϕ straightphi, phi φ phiv, varphi

χ chi ψ psi

ω omega Α Alpha

Β Beta Γ Gamma

Δ Delta Ε Epsi, Epsilon

Ζ Zeta Η Eta

Θ Theta Ι Iota

Κ Kappa Λ Lambda

Μ Mu Ν Nu

Ξ Xi Ο Omicron

Π Pi Ρ Rho

Σ Sigma Τ Tau

Υ Upsi, upsih,
Upsilon

Φ Phi

Χ Chi Ψ Psi

Ω Omega, ohm

7-32

Typeset Symbols

Open Face Letters

Aopf Bopf

Copf Dopf

Eopf Fopf

Gopf Hopf

Iopf Jopf

Kopf Lopf

Mopf Nopf

Oopf Popf

Qopf Ropf

Sopf Topf

Uopf Vopf

Wopf Xopf

Yopf Zopf

Arrows

↑ uarr, UpArrow Uparrow,
DoubleUpArrow,
uArr

↓ darr,
DownArrow

Downarrow,
dArr,
DoubleDownArrow

← LeftArrow, larr,
leftarrow

⇐ DoubleLeftArrow,
Leftarrow, lArr

↔ leftrightarrow,
harr,
LeftRightArrow

⇔ Leftrightarrow,
DoubleLeftRightArrow,
iff, hArr

7-33

7 More Information About Some of the MuPAD® Libraries

→ RightArrow,
rarr, rightarrow

 Rightarrow,
Implies, rArr,
DoubleRightArrow

‘↲‘ ldsh

Operators

+ plus - minus

± PlusMinus,
plusmn, pm

times

^ Hat, circ ‘˙‘ dot

‘∏‘
prod

‘∐‘
coprod,
Coproduct,
amalg

‘*‘ ast * lowast

• bull, bullet · cdot, middot,
CenterDot,
centerdot

cir, compfn,
SmallCircle

° deg

⊕ oplus ⊗ otimes

‘⊕‘
CirclePlus,
bigoplus, xoplus ‘⊗‘

CircleTimes,
bigotimes,
xotime

‘⨀‘
bigodot, xodot,
CircleDot

† dagger

‡ Dagger ∇ Del

⁄ div, divide Backslash,
setminus, setmn,
bsol

Element, isin,
isinv, in

∨ or, vee

7-34

Typeset Symbols

∧ wedge, and
‘⋁‘

Vee, bigvee, xvee

‘⋀‘
Wedge, xwedge,
bigwedge, And

∩ cap

∪ cup
‘⋂‘

Intersection,
bigcap, xcap

‘⋃‘
xcup, bigcup,
Union ‘⨄‘

biguplus, xuplus,
UnionPlus

‘⨆‘
bigsqcup,
xsqcup,
SquareUnion

Comparison Operators

≈ ap, approx,
asymp,
TildeTilde

‘˜‘ tilde, Tilde, sim

TildeFullEqual,
cong

bot, bottom,
UpTee, perp

≡ Congruent, equiv = Equal, equals

≥ ge, geq,
GreaterEqual

> gt

≤ le, leq ≤ NotEqual, ne

< lt ⊂ Subset, sub,
subset

⊆ subseteq, sube,
SubsetEqual

⊃ Superset, sup,
supset

⊇ SupersetEqual,
supe, supseteq

∉ NotElement,
notin

NotSubset, nsub,
nsubset, vnsub

7-35

7 More Information About Some of the MuPAD® Libraries

Other Symbols

¦ brvbar ‘_‘ UnderBar,
UnderLine,
lowbar

‘‾‘ OverBar # num, sharp

& amp true true

false false unknown UNKNOWN

Nil NIL Fail FAIL

Null NULL NaN NotANumber

D CapitalDifferentialD,
D, DD

∂ PartialD, part

d DifferentialD, dd @ commat

© copy ™ trade

® reg ‘¨‘ die, uml

♦ diam, diams,
diamond,
diamondsuit

♥ hearts, heartsuit

♠ spades,
spadesuit

♣ clubs

E E I I

½ half, frac12 ¼ frac14

¾ frac34 ¹ sup1

² sup2 ³ sup3

¶ para ‰ permil

% percnt, percent § sect

7-36

Typeset Symbols

Whitespaces

‘’ ApplyFunction ‘’ InvisibleComma

‘’ InvisibleTimes ‘’ Tab

‘’ blank ‘’ MediumSpace

‘’ Space ‘’ ThickSpace

‘ ’ NonBreakingSpace

Braces

lang, langle,
LeftAngleBracket

{ lbrace, lcub

[lbrack, lsqb lceil, LeftCeiling

LeftFloor, lfloor (lpar

| verbar, vert ‘‖‘ Verbar, Vert

) rpar rfloor,
RightFloor

rceil,
RightCeiling

] rsqb, rbrack

} rbrace, rcub rang, rangle,
RightAngleBracket

Punctuation Marks

:: Colon : colon

, comma ; semi

. period · sdot

¨ Dot, DoubleDot … hellip, tdot, dots

··· cdots — horbar, mdash

– hyphen, ndash ’ apos, quot, rsquo

7-37

7 More Information About Some of the MuPAD® Libraries

‘′‘ prime ‘‵‘ backprime,
bprime

‘‚‘ lsquor, sbquo ‘ lsquo,
OpenCurlyQuote

„ ldquor, bdquo “ ldquo,
OpenCurlyDoubleQuote

’ rsquor,
CloseCurlyQuote

‘″‘ Prime, rdquo

” rdquor,
CloseCurlyDoubleQuote

« laquo

» raquo ! excl

¡ iexcl ? quest

iquest

Umlauts

ä auml Ä Auml

ö ouml Ö Ouml

ü uuml Ü Uuml

ß szlig

Currency

¢ cent $ dollar

€ euro £ pound

¥ yen

7-38

Typeset Symbols

Math Symbols

∇ nabla ∝∝ vprop, varpropto,
vprop

℘ weierp, wp ¬ not

aleph, alefsym ◊ loz, lozenge

√ Sqrt, radic
‘∑‘

Sum, sum

‘∫‘
int, Integral

‘∮‘
conint, oint,
ContourIntegral

‘&cauchypv;‘
cauchypv, pvint,
PrincipalValueIntegral

∴ there4,
Therefore,
therefore

∃ exist, Exists ∀ ForAll, forall

∞ infin ∅ emptyv,
varnothing

∠ ang, angle Re Re

ℜ real ℑ Im, image

e ee, ExponentialE i ImaginaryI, ii

7-39

7 More Information About Some of the MuPAD® Libraries

Type Checking and Mathematical Properties
This library contains several objects to perform syntactical tests with testtype
(see “Example 1” on page 7-42).

Some of the objects in this library depend on arguments that must be given by
the user (see “Example 2” on page 7-42).

Some of the objects can be used as mathematical properties within assume
and is (see “Example 3” on page 7-43).

Note All other objects that are not properties cannot be used within assume
and is (see “Example 4” on page 7-43).

The next tables gives an overview of all objects in this library:

Name syntactical test is a property has arguments

Type::AlgebraicConstantyes no no

Type::AnyType yes no no

Type::Arithmetical yes no no

Type::Boolean yes no no

Type::Complex yes yes no

Type::Constant yes no no

Type::ConstantIdentsyes no no

Type::Equation yes no yes

Type::Even yes yes no

Type::Function yes no no

Type::Imaginary yes yes no

Type::IndepOf yes no yes

Type::Integer yes yes no

Type::Interval no yes yes

7-40

Type Checking and Mathematical Properties

Name syntactical test is a property has arguments

Type::ListOf yes no yes

Type::ListProduct yes no yes

Type::NegInt yes yes no

Type::NegRat yes yes no

Type::Negative yes yes no

Type::NonNegInt yes yes no

Type::NonNegRat yes yes no

Type::NonNegativeyes yes no

Type::NonZero yes yes no

Type::Numeric yes no no

Type::Odd yes yes no

Type::PolyOf yes no yes

Type::PosInt yes yes no

Type::PosRat yes yes no

Type::Positive yes yes no

Type::Prime yes no no

Type::Product yes no yes

Type::Property yes no no

Type::Rational yes yes no

Type::Real yes yes no

Type::Relation yes no no

Type::Residue yes yes yes

Type::SequenceOf yes no yes

Type::Series yes no yes

Type::Set yes no no

Type::SetOf yes no yes

7-41

7 More Information About Some of the MuPAD® Libraries

Name syntactical test is a property has arguments

Type::Singleton yes no no

Type::TableOfEntryyes no yes

Type::TableOfIndexyes no yes

Type::Union yes no yes

Type::Unknown yes no no

Type::Zero yes yes no

Example 1
testtype performs syntactical tests:
testtype([1, 2, 3], Type::ListOf(Type::PosInt))TRUE

testtype(3 + 4*I, Type::Constant)TRUE

Example 2
Some types depends on parameters and cannot be used without parameters:
testtype([1, 2, 3], Type::ListOf)FALSE

testtype(x = 0, Type::Equation(Type::Unknown, Type::Zero))TRUE

An interval must be given with borders, otherwise it is not a property:
assume(x, Type::Interval) Error: The second argument must be a property.
[assume] assume(x, Type::Interval(0, infinity))

7-42

Type Checking and Mathematical Properties

Example 3
is derives mathematical properties:
assume(x > 0): is(sqrt(x^2), Type::NonNegative)TRUE

is(-(2*x + 1) < 0)TRUE

Example 4
Type::Property and Type::Constant are not properties:
assume(x, Type::Property) Error: The second argument must be a property.
[assume] testargs(FALSE):is(x, Type::AnyType) Error: The type of the second
argument is invalid. It must be a property or a goal. [is] testargs(TRUE):

7-43

7 More Information About Some of the MuPAD® Libraries

7-44

Index

Index

Index-1

	toc
	Getting Started
	First Steps in MuPAD
	Open and Save Notebooks
	Opening Notebooks from the MATLAB Command Window
	Open Notebooks in MuPAD
	Save Notebooks

	Desktop Overview
	Evaluate Mathematical Expressions and Commands
	Working in a Single Input Region
	Working with Multiple Input Regions

	Quick Access to Standard MuPAD Functions

	Access Help for Particular Command
	Autocomplete Commands
	Use Tooltips and the Context Menu
	Use Help Commands

	Perform Computations
	Compute with Numbers
	Types of Numbers
	Compute with Integers and Rationals
	Compute with Special Mathematical Constants
	Approximate Numerically
	Work with Complex Numbers

	Differentiation
	Derivatives of Single-Variable Expressions
	Partial Derivatives
	Second- and Higher-Order Derivatives
	Mixed Derivatives
	Derivatives of a Function

	Integration
	Indefinite Integrals
	Definite Integrals
	Numeric Approximation

	Linear Algebra
	Create a Matrix
	Operate on Matrices
	Linear Algebra Library

	Solve Equations
	Solve Equations with One Variable
	Solving Equations with Parameters
	Solve Systems of Equations
	Solve Ordinary Differential Equations
	Solve Inequalities

	Manipulate Expressions
	Transform and Simplify Polynomial Expressions
	Transform and Simplify Trigonometric Expressions

	Use Assumptions in Your Computations
	Solve Expressions with Assumptions
	Integrate with Assumptions
	Simplify Expressions with Assumptions

	Use Graphics
	Graphic Options Available in MuPAD
	Basic Plotting Options
	Advanced Plotting Options

	Basic Plotting
	Create 2-D Plots
	Create 3-D Plots
	Plot Multiple Functions in One Graph
	Specify Plot Ranges
	Plot Piecewise Functions

	Format Plots
	Enable Plot Formatting Mode
	Change Background Settings
	Modify Axes
	Modify Function Plot

	Present Graphics
	Create Animated Graphics
	Creating Animated 2-D Plots
	Create Animated 3-D Plots
	Play Animations
	Count Backwards

	Format and Export Documents and Graphics
	Format Text
	Choose Font Style, Size, and Colors
	Choose Indention, Spacing, and Alignment

	Format Mathematical Expressions
	Format Expressions in Input Regions
	Change Default Format Settings
	Use Frames
	Use Tables
	Create Tables
	Add and Delete Rows and Columns
	Format Tables

	Embed Graphics
	Work with Links
	Insert Links to Targets in Notebooks
	Insert Links Interactively
	Insert Links to Arbitrary Files
	Insert Links to Internet Addresses
	Edit Existing Links
	Delete Links
	Delete Link Targets

	Export Notebooks to HTML, PDF, and Plain Text Formats
	Save and Export Graphics
	Export Static Plots
	Choose the Export Format
	Save Animations
	Export Sequence of Static Images

	Use Data Structures
	Mathematical Expressions
	Sequences
	Create Sequences
	Access Sequence Entries
	Add, Replace, or Remove Sequence Entries

	Lists
	Create Lists
	Access List Entries
	Operate on Lists
	Add, Replace, or Remove List Entries

	Sets
	Create Sets
	Access Set Elements
	Operate on Sets
	Add, Replace, or Remove Set Elements

	Tables
	Create Tables
	Access Table Elements
	Operate on Tables
	Replace or Remove Table Entries

	Arrays
	Create Arrays
	Access Array Entries
	Operate on Arrays
	Replace or Remove Array Entries
	Arrays with Hardware Floating-Point Numbers

	Vectors and Matrices
	Create Matrices
	Create Vectors
	Combine Vectors into a Matrix
	Matrices Versus Arrays
	Convert Matrices and Arrays

	Use the MuPAD Libraries
	Overview of Libraries
	Standard Library
	Find Information About a Library
	Avoid Name Conflicts Between MuPAD Objects and Library Functions

	Programming Basics
	Conditional Control
	Use if Statements
	Apply Multiple Conditions
	Use Nested Conditional Statements
	Use case and otherwise Statements
	Exit a Conditional Statement
	Return Value of a Conditional Statement
	Display Intermediate Results

	Loops
	Use Loops with a Fixed Number of Iterations (for Loops)
	Use Loops with Conditions (while and repeat Loops)
	Use Nested Loops
	Exit a Loop
	Skip Part of Iteration
	Return Value of a Loop
	Display Intermediate Results

	Procedures
	Create a Procedure
	Call a Procedure
	Control Return Values
	Return Multiple Results
	Return Symbolic Calls
	Use Global and Local Variables
	Restore Values and Properties of Global Variables Modified in Pr

	Functions
	Call Existing Functions
	Create Functions
	Evaluate Expressions While Creating Functions
	Use Functions with Parameters

	Shortcut for Closing Statements

	Trace Errors with the MuPAD Debugger
	Overview
	Open the Debugger
	Debug Step-by-Step
	Set and Remove Breakpoints
	Set Standard Breakpoints
	Set Conditional Breakpoints
	Use Breakpoints
	Remove Breakpoints

	Evaluate Variables and Expressions After a Particular Function C
	Watch Intermediate Values of Variables and Expressions
	View Names of Currently Running Procedures
	Correct Errors

	Notebook Interface
	Notebook Overview
	Debugger Window Overview
	Arrange Toolbars and Panes
	Enabling and Disabling Toolbars and Panes
	Move Toolbars and Panes

	Enter Data and View Results
	View Status Information
	Save Custom Arrangements
	Set Preferences for Notebooks
	Preferences Available for Notebooks
	Change Default Formatting
	Use Scalable Formats for Copying Formulas and Graphics

	Set Preferences for Dialogs, Toolbars, and Graphics
	Preferences Available for Dialogs, Toolbars, and Graphics
	Preferences for Toolbars
	Preferences for Graphics
	Preferences for Dialog Boxes

	Set Font Preferences
	Select Generic Fonts
	Default Generic Fonts for Microsoft Windows, Macintosh, and Linu

	Set Engine Preferences
	Change Global Settings
	Restore Default Global Settings
	Add Hidden Startup Commands to All Notebooks
	Options Available for MuPAD Engine Startup

	Get Version Information
	Use Different Output Modes
	Abbreviations
	Typeset Math Mode
	Pretty Print Mode
	Mathematical Notations Used in Typeset Mode

	Set Line Length in Plain Text Outputs
	Delete Outputs
	Greek Letters in Text Regions
	Special Characters in Outputs
	Non-Greek Characters in Text Regions
	Use Keyboard Shortcuts
	Use Mnemonics
	Overview
	Wrap Long Lines
	Wrap Text
	Wrap Expressions in Input Regions
	Wrap Output Expressions

	Hide Code Lines
	Change Font Size Quickly
	Scale Graphics
	Use Print Preview
	View Documents Before Printing
	Print Documents from Print Preview
	Save Documents to PDF Format
	Get More Out of Print Preview

	Change Page Settings for Printing
	Print Wide Notebooks

	Mathematics
	Evaluations in Symbolic Computations
	Level of Evaluation
	What Is an Evaluation Level?
	Incomplete Evaluations
	Control Evaluation Levels

	Enforce Evaluation
	Prevent Evaluation
	Actual and Displayed Results of Evaluations
	Perform Evaluation at a Point
	Choose a Solver
	Solve Algebraic Equations and Inequalities
	Specify Right Side of Equation
	Specify Equation Variables
	Solve Higher-Order Polynomial Equations
	Find Multiple Roots
	Isolate Real Roots of Polynomial Equations

	Solve Algebraic Systems
	Linear Systems of Equations
	Linear Systems in a Matrix Form
	Specialized Matrices

	Nonlinear Systems
	System of Polynomial Equations
	System of Arbitrary Nonlinear Equations

	Solve Ordinary Differential Equations and Systems
	General Solutions
	Initial and Boundary Value Problems
	Special Types of Ordinary Differential Equations
	Systems of Ordinary Differential Equations
	Plot Solutions of Differential Equations

	Test Results
	Solutions Given in the Form of Equations
	Solutions Given as Memberships
	Solutions Obtained with IgnoreAnalyticConstraints

	If Results Look Too Complicated
	Use Options to Narrow Results
	Use Assumptions to Narrow Results
	Simplify Solutions

	If Results Differ from Expected
	Verify Equivalence of Expected and Obtained Solutions
	Verify Equivalence of Solutions Containing Arbitrary Constants
	Equal Arbitrary Constants
	Arbitrary Constants Representing Different Expressions

	Completeness of Expected and Obtained Solutions
	Special Cases
	Infinite Solution Sets

	Solve Equations Numerically
	Get Numeric Results
	Approximate Symbolic Solutions Numerically
	Solve Equations Numerically

	Solve Polynomial Equations and Systems
	Solve Arbitrary Algebraic Equations and Systems
	Isolate Numeric Roots
	Solve Differential Equations and Systems
	Approximate at Particular Points
	Represent Numeric Approximations as Functions

	Use General Simplification Functions
	When to Use General Simplifiers
	Choose simplify or Simplify
	Use Options to Control Simplification Algorithms

	Choose Simplification Functions
	Collect Terms with Same Powers
	Combine Terms of Same Algebraic Structures
	Expand Expressions
	Factor Expressions
	Compute Normal Forms of Expressions
	Compute Partial Fraction Decompositions of Expressions
	Simplify Radicals in Arithmetic Expressions
	Extract Real and Imaginary Parts of Complex Expressions
	Rewrite Expressions in Terms of Other Functions

	If You Want to Simplify Results Further
	Increase the Number of Simplification Steps
	Apply Several Simplification Functions
	Use Options
	Use Assumptions

	Convert Expressions Involving Special Functions
	Simplify Special Functions Automatically
	Use General Simplifiers to Reduce Special Functions
	Expand Expressions Involving Special Functions
	Verify Solutions Involving Special Functions

	When to Use Assumptions
	Use Permanent Assumptions
	Set Permanent Assumptions
	Add Permanent Assumptions
	Clear Permanent Assumptions

	Use Temporary Assumptions
	Create Temporary Assumptions
	Assign Temporary Values to Parameters
	Interactions Between Temporary and Permanent Assumptions
	Use Temporary Assumptions on Top of Permanent Assumptions

	Choose Differentiation Function
	Differentiate Expressions
	Differentiate Functions
	Compute Indefinite Integrals
	Compute Definite Integrals
	Compute Multiple Integrals
	Apply Standard Integration Methods Directly
	Integration by Parts
	Change of Variable

	Get Simpler Results
	If an Integral Is Undefined
	If MuPAD Cannot Compute an Integral
	Approximate Indefinite Integrals
	Approximate Definite Integrals

	Compute Symbolic Sums
	Indefinite Sums
	Definite Sums
	Sums Over Roots of a Polynomial

	Approximate Sums Numerically
	Compute Taylor Series for Univariate Expressions
	Compute Taylor Series for Multivariate Expressions
	Control Number of Terms in Series Expansions
	O-term (The Landau Symbol)
	Compute Generalized Series
	Compute Bidirectional Limits
	Compute Right and Left Limits
	If Limits Do Not Exist
	Create Matrices
	Create Vectors
	Create Special Matrices
	Access and Modify Matrix Elements
	Use Loops to Modify Matrix Elements
	Use Functions to Modify Matrix Elements

	Create Matrices over Particular Rings
	Use Sparse and Dense Matrices
	Compute with Matrices
	Basic Arithmetic Operations
	More Operations Available for Matrices

	Compute Determinants and Traces of Square Matrices
	Invert Matrices
	Transpose Matrices
	Swap and Delete Rows and Columns
	Compute Dimensions of a Matrix
	Compute Reduced Row Echelon Form
	Compute Rank of a Matrix
	Compute Bases for Null Spaces of Matrices
	Find Eigenvalues and Eigenvectors
	Find Jordan Canonical Form of a Matrix
	Compute Matrix Exponentials
	Compute Cholesky Factorization
	Compute LU Factorization
	Compute QR Factorization
	Compute Determinant Numerically
	Compute Eigenvalues and Eigenvectors Numerically
	Compute Factorizations Numerically
	Cholesky Decomposition
	LU Decomposition
	QR Decomposition
	Singular Value Decomposition

	Mathematical Constants Available in MuPAD
	Special Real Numbers
	Infinities
	Boolean Constants
	Special Values
	Special Sets

	Special Functions Available in MuPAD
	Dirac and Heaviside Functions
	Gamma Functions
	Zeta Function and Polylogarithms
	Airy and Bessel Functions
	Exponential and Trigonometric Integrals
	Error Functions and Fresnel Functions
	Hypergeometric, Meijer G, and Whittaker Functions
	Elliptic Integrals
	Lambert W Function (omega Function)

	Floating-Point Arguments and Function Sensitivity
	Use Symbolic Computations When Possible
	Increase Precision
	Approximate Parameters and Approximate Results
	Plot Special Functions

	Integral Transforms
	Fourier and Inverse Fourier Transforms
	Laplace and Inverse Laplace Transforms

	Z-Transforms
	Discrete Fourier Transforms
	Use Custom Patterns for Transforms
	Add New Patterns
	Overwrite Existing Patterns

	Supported Distributions
	Import Data
	Store Statistical Data
	Compute Measures of Central Tendency
	Compute Measures of Dispersion
	Compute Measures of Shape
	Compute Covariance and Correlation
	Handle Outliers
	Bin Data
	Create Scatter and List Plots
	Create Bar Charts, Histograms, and Pie Charts
	Bar Charts
	Histograms
	Pie Charts

	Create Box Plots
	Create Quantile-Quantile Plots
	Univariate Linear Regression
	Univariate Nonlinear Regression
	Multivariate Regression
	Principles of Hypothesis Testing
	Perform chi-square Test
	Perform Kolmogorov-Smirnov Test
	Perform Shapiro-Wilk Test
	Perform t-Test
	Divisors
	Compute Divisors and Number of Divisors
	Compute Greatest Common Divisors
	Compute Least Common Multiples

	Primes and Factorizations
	Operate on Primes
	Factorizations
	Prove Primality

	Modular Arithmetic
	Quotients and Remainders
	Common Modular Arithmetic Operations
	Residue Class Rings and Fields

	Congruences
	Linear Congruences
	Systems of Linear Congruences
	Modular Square Roots
	Compute Modular Square Roots
	Use Solvability Tests: Legendre and Jacobi Symbols

	General Solver for Congruences

	Sequences of Numbers
	Fibonacci Numbers
	Mersenne Primes
	Continued Fractions

	Programming Fundamentals
	Data Type Definition
	Domain Types
	Expression Types

	Choose Appropriate Data Structures
	Convert Data Types
	Use the coerce Function
	Use the expr Function
	Use Constructors

	Define Your Own Data Types
	Access Arguments of a Procedure
	Test Arguments
	Check Types of Arguments
	Check Arguments of Individual Procedures

	Verify Options
	Trace Procedures, Domains, Methods, and Function Environments
	Display Progress
	Embed Status Messages in Procedures
	Display Status Messages

	Use Assertions
	Write Error and Warning Messages
	Handle Errors
	When to Analyze Performance
	Measure Time
	Calls to MuPAD Processes
	Calls to External Processes

	Profile Your Code
	Techniques for Improving Performance
	Display Memory Usage
	Use the Status Bar
	Generate Memory Usage Reports Periodically
	Generate Memory Usage Reports for Procedure Calls

	Remember Mechanism
	Why Use the Remember Mechanism
	Remember Results Without Context
	Remember Results and Context
	Clear Remember Tables
	Potential Problems Related to the Remember Mechanism

	History Mechanism
	Access the History Table
	Specify Maximum Number of Entries
	Clear the History Table

	Why Test Your Code
	Write Single Tests
	Write Test Scripts
	Code Verification
	Protect Function and Option Names
	Create and Extend Libraries
	Create New Libraries
	Add New Functions to Libraries

	Data Collection
	Parallel Collection
	Fixed-Length Collection
	Known-Maximum-Length Collection
	Unknown-Maximum-Length Collection

	Visualize Expression Trees
	Modify Subexpressions
	Find and Replace Subexpressions
	Recursive Substitution

	Variables Inside Procedures
	Closures
	Static Variables
	Alternative to Static Variables in MuPAD
	Shared Static Variables

	Utility Functions
	Utility Functions Inside Procedures
	Utility Functions Outside Procedures
	Utility Functions in Closures

	Private Methods
	Calls by Reference and Calls by Value
	Calls by Value
	Calls by Reference
	Lexical Scoping
	Closures in Objects
	Domains in Objects
	Context Switching

	Integrate Custom Functions into MuPAD

	Graphics and Animations
	Gallery
	2D Function and Curve Plots
	Other 2D examples
	3D Functions, Surfaces, and Curves

	Easy Plotting: Graphs of Functions
	2D Function Graphs: plotfunc2d
	3D Function Graphs: plotfunc3d
	Attributes for plotfunc2d and plotfunc3d

	Advanced Plotting: Principles and First Examples
	General Principles
	Some Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	The Full Picture: Graphical Trees
	Viewer, Browser, and Inspector: Interactive Manipulation
	Primitives
	Attributes
	Default Values
	Inheritance of Attributes
	Primitives Requesting Special Scene Attributes: “Hints”
	The Help Pages of Attributes

	Layout of Canvas and Scenes
	Layout of the Canvas
	Layout of Scenes

	Animations
	Generate Simple Animations
	Play Animations
	The Number of Frames and the Time Range
	What Can Be Animated?
	Advanced Animations: The Synchronization Model
	Frame by Frame Animations
	Examples
	Example 1
	Example 2
	Example 3

	Groups of Primitives
	Transformations
	Legends
	Fonts
	Colors
	RGB Colors
	HSV Colors

	Save and Export Pictures
	Save and Export Interactively
	Save in Batch Mode

	Import Pictures
	Cameras in 3D
	Possible Strange Effects in 3D

	Quick Reference
	Glossary

	More Information About Some of the MuPAD Libraries
	Abstract Data Types Library
	Example

	Axioms
	Bibliography

	Categories
	Introduction
	Category Constructors
	Bibliography

	Combinatorics
	Functional Programming
	Gröbner bases
	The import Library
	Integration Utilities
	First steps
	Integration by parts and by change of variables

	Linear Algebra Library
	Introduction
	Data Types for Matrices and Vectors
	Remarks on Improving Runtime

	Linear Optimization
	The misc Library
	Numeric Algorithms Library
	Orthogonal Polynomials
	Properties and Assumptions
	Properties of identifiers
	All Properties

	Typeset Symbols
	Greek Letters
	Open Face Letters
	Arrows
	Operators
	Comparison Operators
	Other Symbols
	Whitespaces
	Braces
	Punctuation Marks
	Umlauts
	Currency
	Math Symbols

	Type Checking and Mathematical Properties
	Example 1
	Example 2
	Example 3
	Example 4

	Index

	tables
	plotfunc3d
	plot library
	plot library
	plot library
	plot library
	plot library
	Layout and style parameters for scenes

